dahdi-linux/drivers/dahdi/wcte12xp/base.c
Shaun Ruffell 4f0cf5fb98 dahdi: smp_mb_{before,after}_clear_bit -> smp_mb_{before,after}_atomic.
This is needed to compile against upstream Linux 3.18 since commit
"locking: Remove deprecated smp_mb__() barriers" [1].

[1] https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=2e39465abc4b7856a0ea6fcf4f

Signed-off-by: Shaun Ruffell <sruffell@digium.com>
Signed-off-by: Russ Meyerriecks <rmeyerriecks@digium.com>
(cherry picked from commit 378986841c)
2015-06-04 15:25:00 -05:00

3219 lines
84 KiB
C

/*
* Digium, Inc. Wildcard TE12xP T1/E1 card Driver
*
* Written by Michael Spiceland <mspiceland@digium.com>
*
* Adapted from the wctdm24xxp and wcte11xp drivers originally
* written by Mark Spencer <markster@digium.com>
* Matthew Fredrickson <creslin@digium.com>
* William Meadows <wmeadows@digium.com>
*
* Copyright (C) 2007-2012, Digium, Inc.
*
* All rights reserved.
*
*/
/*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2 as published by the
* Free Software Foundation. See the LICENSE file included with
* this program for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/moduleparam.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <stdbool.h>
#include <dahdi/kernel.h>
#include "wct4xxp/wct4xxp.h" /* For certain definitions */
#include "voicebus/voicebus.h"
#include "voicebus/vpmoct.h"
#include "wcte12xp.h"
#include "voicebus/GpakCust.h"
#include "voicebus/GpakApi.h"
#if VOICEBUS_SFRAME_SIZE != SFRAME_SIZE
#error VOICEBUS_SFRAME_SIZE != SFRAME_SIZE
#endif
static int debug;
static int j1mode = -1;
static int alarmdebounce = 2500; /* LOF/LFA def to 2.5s AT&T TR54016*/
static int losalarmdebounce = 2500; /* LOS def to 2.5s AT&T TR54016*/
static int aisalarmdebounce = 2500; /* AIS(blue) def to 2.5s AT&T TR54016*/
static int yelalarmdebounce = 500; /* RAI(yellow) def to 0.5s AT&T devguide */
static int t1e1override = -1; /* deprecated */
static char *default_linemode = "auto"; /* 'auto', 'e1', 't1', or 'j1' */
static int latency = VOICEBUS_DEFAULT_LATENCY;
static unsigned int max_latency = VOICEBUS_DEFAULT_MAXLATENCY;
static int vpmsupport = 1;
static int vpmtsisupport = 0;
static int vpmnlptype = DEFAULT_NLPTYPE;
static int vpmnlpthresh = DEFAULT_NLPTHRESH;
static int vpmnlpmaxsupp = DEFAULT_NLPMAXSUPP;
static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec);
static int t1xxp_clear_maint(struct dahdi_span *span);
static const struct dahdi_echocan_features vpm150m_ec_features = {
.NLP_automatic = 1,
.CED_tx_detect = 1,
.CED_rx_detect = 1,
};
static const struct dahdi_echocan_ops vpm150m_ec_ops = {
.echocan_free = echocan_free,
};
static struct t1 *ifaces[WC_MAX_IFACES];
struct t1_desc {
const char *name;
};
static const struct t1_desc te120p = {"Wildcard TE120P"};
static const struct t1_desc te122 = {"Wildcard TE122"};
static const struct t1_desc te121 = {"Wildcard TE121"};
static inline bool is_pcie(const struct t1 *t1)
{
return (0 == strcmp(t1->variety, te121.name));
}
/* names of HWEC modules */
static const char *vpmadt032_name = "VPMADT032";
static const char *vpmoct_name = "VPMOCT032";
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static kmem_cache_t *cmd_cache;
#else
static struct kmem_cache *cmd_cache;
#endif
static struct command *get_free_cmd(struct t1 *wc)
{
struct command *cmd;
cmd = kmem_cache_alloc(cmd_cache, GFP_ATOMIC);
if (cmd) {
memset(cmd, 0, sizeof(*cmd));
init_completion(&cmd->complete);
INIT_LIST_HEAD(&cmd->node);
}
return cmd;
}
static void free_cmd(struct t1 *wc, struct command *cmd)
{
kmem_cache_free(cmd_cache, cmd);
}
static struct command *_get_pending_cmd(struct t1 *wc)
{
struct command *cmd = NULL;
if (!list_empty(&wc->pending_cmds)) {
cmd = list_entry(wc->pending_cmds.next, struct command, node);
list_move_tail(&cmd->node, &wc->active_cmds);
}
return cmd;
}
static void submit_cmd(struct t1 *wc, struct command *cmd)
{
unsigned long flags;
spin_lock_irqsave(&wc->reglock, flags);
list_add_tail(&cmd->node, &wc->pending_cmds);
spin_unlock_irqrestore(&wc->reglock, flags);
}
static void _resend_cmds(struct t1 *wc)
{
list_splice_init(&wc->active_cmds, &wc->pending_cmds);
if (wc->vpmadt032)
vpmadt032_resend(wc->vpmadt032);
}
static inline void cmd_dequeue_vpmoct(struct t1 *wc, u8 *eframe)
{
struct vpmoct *vpm = wc->vpmoct;
struct vpmoct_cmd *cmd;
u8 i;
/* Pop a command off pending list */
spin_lock(&vpm->list_lock);
if (list_empty(&vpm->pending_list)) {
spin_unlock(&vpm->list_lock);
return;
}
cmd = list_entry(vpm->pending_list.next, struct vpmoct_cmd, node);
/* Push the command onto active list, if it's a syncronous cmd */
if (is_vpmoct_cmd_read(cmd))
list_move_tail(&cmd->node, &vpm->active_list);
else
list_del_init(&cmd->node);
/* Skip audio */
eframe += 66;
/* Save ident so we can match the return eframe */
cmd->txident = wc->txident;
/* We have four timeslots to work with for a regular spi packet */
/* TODO: Create debug flag for this in dev */
eframe[CMD_BYTE(0, 0, 1)] = 0x12;
eframe[CMD_BYTE(0, 1, 1)] = 0x34;
eframe[CMD_BYTE(0, 2, 1)] = 0x56;
eframe[CMD_BYTE(1, 0, 1)] = cmd->command;
eframe[CMD_BYTE(1, 1, 1)] = cmd->address;
eframe[CMD_BYTE(1, 2, 1)] = cmd->data[0];
for (i = 1; i < cmd->chunksize; i++) {
/* Every time slot is filled with chunk data
* ignoring command/address/data structure */
eframe[CMD_BYTE(1, 2, 1) + 2*i] = cmd->data[i];
}
/* Clean up fire-and-forget messages from memory */
if (list_empty(&cmd->node))
kfree(cmd);
spin_unlock(&vpm->list_lock);
#if 0
dev_info(&wc->vb.pdev->dev, "Wrote: ");
for (i = 0; i < 7; i++) {
dev_info(&wc->vb.pdev->dev, "|%x %x %x|",
eframe[CMD_BYTE(i, 0, 1)],
eframe[CMD_BYTE(i, 1, 1)],
eframe[CMD_BYTE(i, 2, 1)]);
}
#endif
}
static void cmd_dequeue(struct t1 *wc, unsigned char *eframe, int frame_num, int slot)
{
struct command *curcmd=NULL;
u16 address;
u8 data;
u32 flags;
/* Skip audio */
eframe += 66;
/* Search for something waiting to transmit */
if ((slot < 6) && (frame_num) && (frame_num < DAHDI_CHUNKSIZE - 1)) {
/* only 6 useable cs slots per */
/* framer */
curcmd = _get_pending_cmd(wc);
if (curcmd) {
curcmd->cs_slot = slot;
curcmd->ident = wc->txident;
address = curcmd->address;
data = curcmd->data;
flags = curcmd->flags;
} else {
/* If nothing else, use filler */
address = 0x4a;
data = 0;
flags = __CMD_RD;
}
if (flags & __CMD_WR)
eframe[CMD_BYTE(slot, 0, 0)] = 0x0c; /* 0c write command */
else if (flags & __CMD_LEDS)
eframe[CMD_BYTE(slot, 0, 0)] = 0x10 | ((address) & 0x0E); /* led set command */
else if (flags & __CMD_PINS)
eframe[CMD_BYTE(slot, 0, 0)] = 0x30; /* CPLD2 pin state */
else
eframe[CMD_BYTE(slot, 0, 0)] = 0x0a; /* read command */
eframe[CMD_BYTE(slot, 1, 0)] = address;
eframe[CMD_BYTE(slot, 2, 0)] = data;
}
}
static inline void cmd_decipher(struct t1 *wc, const u8 *eframe)
{
struct command *cmd = NULL;
const int IS_VPM = 0;
/* Skip audio */
eframe += 66;
while (!list_empty(&wc->active_cmds)) {
cmd = list_entry(wc->active_cmds.next, struct command, node);
if (cmd->ident != wc->rxident)
break;
if (cmd->flags & (__CMD_WR | __CMD_LEDS)) {
/* Nobody is waiting on writes...so let's just
* free them here. */
list_del_init(&cmd->node);
free_cmd(wc, cmd);
} else {
cmd->data |= eframe[CMD_BYTE(cmd->cs_slot, 2, IS_VPM)];
list_del_init(&cmd->node);
complete(&cmd->complete);
}
}
}
inline void cmd_decipher_vpmoct(struct t1 *wc, const u8 *eframe)
{
int i;
struct vpmoct *vpm = wc->vpmoct;
struct vpmoct_cmd *cmd;
/* Skip audio and first 6 timeslots */
eframe += 66;
spin_lock(&vpm->list_lock);
/* No command to handle, just exit */
if (list_empty(&vpm->active_list)) {
spin_unlock(&vpm->list_lock);
return;
}
cmd = list_entry(vpm->active_list.next, struct vpmoct_cmd, node);
if (wc->rxident == cmd->txident)
list_del_init(&cmd->node);
else
cmd = NULL;
spin_unlock(&vpm->list_lock);
if (!cmd)
return;
#if 0
/* Store result */
dev_info(&wc->vb.pdev->dev, "Read: ");
for (i = 0; i < 7; i++) {
dev_info(&wc->vb.pdev->dev, "|%x %x %x|",
eframe[CMD_BYTE(i, 0, 1)],
eframe[CMD_BYTE(i, 1, 1)],
eframe[CMD_BYTE(i, 2, 1)]);
}
dev_info(&wc->vb.pdev->dev, "\n");
#endif
cmd->command = eframe[CMD_BYTE(1, 0, 1)];
cmd->address = eframe[CMD_BYTE(1, 1, 1)];
for (i = 0; i < cmd->chunksize; ++i)
cmd->data[i] = eframe[CMD_BYTE(1, 2, 1) + 2*i];
complete(&cmd->complete);
}
inline void cmd_decipher_vpmadt032(struct t1 *wc, const u8 *eframe)
{
struct vpmadt032 *vpm = wc->vpmadt032;
struct vpmadt032_cmd *cmd;
BUG_ON(!vpm);
/* If the hardware is not processing any commands currently, then
* there is nothing for us to do here. */
if (list_empty(&vpm->active_cmds)) {
return;
}
spin_lock(&vpm->list_lock);
cmd = list_entry(vpm->active_cmds.next, struct vpmadt032_cmd, node);
if (wc->rxident == cmd->txident) {
list_del_init(&cmd->node);
} else {
cmd = NULL;
}
spin_unlock(&vpm->list_lock);
if (!cmd) {
return;
}
/* Skip audio */
eframe += 66;
/* Store result */
cmd->data = (0xff & eframe[CMD_BYTE(2, 1, 1)]) << 8;
cmd->data |= eframe[CMD_BYTE(2, 2, 1)];
if (cmd->desc & __VPM150M_WR) {
kfree(cmd);
} else {
cmd->desc |= __VPM150M_FIN;
complete(&cmd->complete);
}
}
static int config_vpmadt032(struct vpmadt032 *vpm, struct t1 *wc)
{
int res, channel;
GpakPortConfig_t portconfig = {0};
gpakConfigPortStatus_t configportstatus;
GPAK_PortConfigStat_t pstatus;
GpakChannelConfig_t chanconfig;
GPAK_ChannelConfigStat_t cstatus;
GPAK_AlgControlStat_t algstatus;
/* First Serial Port config */
portconfig.SlotsSelect1 = SlotCfgNone;
portconfig.FirstBlockNum1 = 0;
portconfig.FirstSlotMask1 = 0x0000;
portconfig.SecBlockNum1 = 1;
portconfig.SecSlotMask1 = 0x0000;
portconfig.SerialWordSize1 = SerWordSize8;
portconfig.CompandingMode1 = cmpNone;
portconfig.TxFrameSyncPolarity1 = FrameSyncActHigh;
portconfig.RxFrameSyncPolarity1 = FrameSyncActHigh;
portconfig.TxClockPolarity1 = SerClockActHigh;
portconfig.RxClockPolarity1 = SerClockActHigh;
portconfig.TxDataDelay1 = DataDelay0;
portconfig.RxDataDelay1 = DataDelay0;
portconfig.DxDelay1 = Disabled;
portconfig.ThirdSlotMask1 = 0x0000;
portconfig.FouthSlotMask1 = 0x0000;
portconfig.FifthSlotMask1 = 0x0000;
portconfig.SixthSlotMask1 = 0x0000;
portconfig.SevenSlotMask1 = 0x0000;
portconfig.EightSlotMask1 = 0x0000;
/* Second Serial Port config */
portconfig.SlotsSelect2 = SlotCfg8Groups;
portconfig.FirstBlockNum2 = 0;
portconfig.FirstSlotMask2 = 0x5554;
portconfig.SecBlockNum2 = 1;
portconfig.SecSlotMask2 = 0x5555;
portconfig.ThirdSlotMask2 = 0x5555;
portconfig.FouthSlotMask2 = 0x5555;
portconfig.SerialWordSize2 = SerWordSize8;
portconfig.CompandingMode2 = cmpNone;
portconfig.TxFrameSyncPolarity2 = FrameSyncActHigh;
portconfig.RxFrameSyncPolarity2 = FrameSyncActHigh;
portconfig.TxClockPolarity2 = SerClockActHigh;
portconfig.RxClockPolarity2 = SerClockActHigh;
portconfig.TxDataDelay2 = DataDelay0;
portconfig.RxDataDelay2 = DataDelay0;
portconfig.DxDelay2 = Disabled;
portconfig.FifthSlotMask2 = 0x0001;
portconfig.SixthSlotMask2 = 0x0000;
portconfig.SevenSlotMask2 = 0x0000;
portconfig.EightSlotMask2 = 0x0000;
/* Third Serial Port Config */
portconfig.SlotsSelect3 = SlotCfg8Groups;
portconfig.FirstBlockNum3 = 0;
portconfig.FirstSlotMask3 = 0x5554;
portconfig.SecBlockNum3 = 1;
portconfig.SecSlotMask3 = 0x5555;
portconfig.SerialWordSize3 = SerWordSize8;
portconfig.CompandingMode3 = cmpNone;
portconfig.TxFrameSyncPolarity3 = FrameSyncActHigh;
portconfig.RxFrameSyncPolarity3 = FrameSyncActHigh;
portconfig.TxClockPolarity3 = SerClockActHigh;
portconfig.RxClockPolarity3 = SerClockActLow;
portconfig.TxDataDelay3 = DataDelay0;
portconfig.RxDataDelay3 = DataDelay0;
portconfig.DxDelay3 = Disabled;
portconfig.ThirdSlotMask3 = 0x5555;
portconfig.FouthSlotMask3 = 0x5555;
portconfig.FifthSlotMask3 = 0x0001;
portconfig.SixthSlotMask3 = 0x0000;
portconfig.SevenSlotMask3 = 0x0000;
portconfig.EightSlotMask3 = 0x0000;
if ((configportstatus = gpakConfigurePorts(vpm->dspid, &portconfig, &pstatus))) {
t1_info(wc, "Configuration of ports failed (%d)!\n",
configportstatus);
return -1;
} else {
if (vpm->options.debug & DEBUG_VPMADT032_ECHOCAN)
t1_info(wc, "Configured McBSP ports successfully\n");
}
if ((res = gpakPingDsp(vpm->dspid, &vpm->version))) {
t1_info(wc, "Error pinging DSP (%d)\n", res);
return -1;
}
for (channel = 0; channel < ARRAY_SIZE(vpm->curecstate); ++channel) {
vpm->curecstate[channel].tap_length = 0;
vpm->curecstate[channel].nlp_type = vpm->options.vpmnlptype;
vpm->curecstate[channel].nlp_threshold = vpm->options.vpmnlpthresh;
vpm->curecstate[channel].nlp_max_suppress = vpm->options.vpmnlpmaxsupp;
vpm->setchanconfig_from_state(vpm, channel, &chanconfig);
if ((res = gpakConfigureChannel(vpm->dspid, channel, tdmToTdm, &chanconfig, &cstatus))) {
t1_info(wc, "Unable to configure channel #%d (%d)",
channel, res);
if (res == 1) {
printk(KERN_CONT ", reason %d", cstatus);
}
printk(KERN_CONT "\n");
return -1;
}
if ((res = gpakAlgControl(vpm->dspid, channel, BypassEcanA, &algstatus))) {
t1_info(wc, "Unable to disable echo can on channel %d "
"(reason %d:%d)\n", channel + 1, res,
algstatus);
return -1;
}
}
if ((res = gpakPingDsp(vpm->dspid, &vpm->version))) {
t1_info(wc, "Error pinging DSP (%d)\n", res);
return -1;
}
set_bit(VPM150M_ACTIVE, &vpm->control);
return 0;
}
#define debug_printk(wc, lvl, fmt, args...) if (debug >= (lvl)) do { \
t1_info((wc), fmt , ## args); } while (0)
static void cmd_dequeue_vpmadt032(struct t1 *wc, unsigned char *eframe)
{
struct vpmadt032_cmd *cmd;
struct vpmadt032 *vpm = wc->vpmadt032;
int x;
unsigned char leds = ~((atomic_read(&wc->txints) / 1000) % 8) & 0x7;
/* Skip audio */
eframe += 66;
if (test_bit(VPM150M_HPIRESET, &vpm->control)) {
debug_printk(wc, 1, "HW Resetting VPMADT032 ...\n");
for (x = 0; x < 4; x++) {
if (!x) {
if (test_and_clear_bit(VPM150M_HPIRESET,
&vpm->control)) {
eframe[CMD_BYTE(x, 0, 1)] = 0x0b;
} else {
eframe[CMD_BYTE(x, 0, 1)] = leds;
}
} else {
eframe[CMD_BYTE(x, 0, 1)] = 0x00 | leds;
}
eframe[CMD_BYTE(x, 1, 1)] = 0;
eframe[CMD_BYTE(x, 2, 1)] = 0x00;
}
return;
}
if ((cmd = vpmadt032_get_ready_cmd(vpm))) {
cmd->txident = wc->txident;
#if 0
printk(KERN_DEBUG "Found command txident = %d, desc = 0x%x, addr = 0x%x, data = 0x%x\n", cmd->txident, cmd->desc, cmd->address, cmd->data);
#endif
if (cmd->desc & __VPM150M_RWPAGE) {
/* Set CTRL access to page*/
eframe[CMD_BYTE(0, 0, 1)] = (0x8 << 4);
eframe[CMD_BYTE(0, 1, 1)] = 0;
eframe[CMD_BYTE(0, 2, 1)] = 0x20;
/* Do a page write */
if (cmd->desc & __VPM150M_WR) {
eframe[CMD_BYTE(1, 0, 1)] = ((0x8 | 0x4) << 4);
} else {
eframe[CMD_BYTE(1, 0, 1)] = ((0x8 | 0x4 | 0x1) << 4);
}
eframe[CMD_BYTE(1, 1, 1)] = 0;
if (cmd->desc & __VPM150M_WR) {
eframe[CMD_BYTE(1, 2, 1)] = cmd->data & 0xf;
} else {
eframe[CMD_BYTE(1, 2, 1)] = 0;
}
if (cmd->desc & __VPM150M_WR) {
/* Fill in buffer to size */
eframe[CMD_BYTE(2, 0, 1)] = 0;
eframe[CMD_BYTE(2, 1, 1)] = 0;
eframe[CMD_BYTE(2, 2, 1)] = 0;
} else {
/* Do reads twice b/c of vpmadt032 bug */
eframe[CMD_BYTE(2, 0, 1)] = ((0x8 | 0x4 | 0x1) << 4);
eframe[CMD_BYTE(2, 1, 1)] = 0;
eframe[CMD_BYTE(2, 2, 1)] = 0;
}
/* Clear XADD */
eframe[CMD_BYTE(3, 0, 1)] = (0x8 << 4);
eframe[CMD_BYTE(3, 1, 1)] = 0;
eframe[CMD_BYTE(3, 2, 1)] = 0;
/* Fill in buffer to size */
eframe[CMD_BYTE(4, 0, 1)] = 0;
eframe[CMD_BYTE(4, 1, 1)] = 0;
eframe[CMD_BYTE(4, 2, 1)] = 0;
} else {
/* Set address */
eframe[CMD_BYTE(0, 0, 1)] = ((0x8 | 0x4) << 4);
eframe[CMD_BYTE(0, 1, 1)] = (cmd->address >> 8) & 0xff;
eframe[CMD_BYTE(0, 2, 1)] = cmd->address & 0xff;
/* Send/Get our data */
if (cmd->desc & __VPM150M_WR) {
eframe[CMD_BYTE(1, 0, 1)] = ((0x8 | (0x3 << 1)) << 4);
} else {
eframe[CMD_BYTE(1, 0, 1)] = ((0x8 | (0x3 << 1) | 0x1) << 4);
}
eframe[CMD_BYTE(1, 1, 1)] = (cmd->data >> 8) & 0xff;
eframe[CMD_BYTE(1, 2, 1)] = cmd->data & 0xff;
if (cmd->desc & __VPM150M_WR) {
/* Fill in */
eframe[CMD_BYTE(2, 0, 1)] = 0;
eframe[CMD_BYTE(2, 1, 1)] = 0;
eframe[CMD_BYTE(2, 2, 1)] = 0;
} else {
/* Do this again for reads b/c of the bug in vpmadt032 */
eframe[CMD_BYTE(2, 0, 1)] = ((0x8 | (0x3 << 1) | 0x1) << 4);
eframe[CMD_BYTE(2, 1, 1)] = (cmd->data >> 8) & 0xff;
eframe[CMD_BYTE(2, 2, 1)] = cmd->data & 0xff;
}
/* Fill in the rest */
eframe[CMD_BYTE(3, 0, 1)] = 0;
eframe[CMD_BYTE(3, 1, 1)] = 0;
eframe[CMD_BYTE(3, 2, 1)] = 0;
/* Fill in the rest */
eframe[CMD_BYTE(4, 0, 1)] = 0;
eframe[CMD_BYTE(4, 1, 1)] = 0;
eframe[CMD_BYTE(4, 2, 1)] = 0;
}
} else if (test_and_clear_bit(VPM150M_SWRESET, &vpm->control)) {
for (x = 0; x < 7; x++) {
if (0 == x) {
eframe[CMD_BYTE(x, 0, 1)] = (0x8 << 4);
} else {
eframe[CMD_BYTE(x, 0, 1)] = 0x00;
}
eframe[CMD_BYTE(x, 1, 1)] = 0;
if (0 == x) {
eframe[CMD_BYTE(x, 2, 1)] = 0x01;
} else {
eframe[CMD_BYTE(x, 2, 1)] = 0x00;
}
}
} else {
for (x = 0; x < 7; x++) {
eframe[CMD_BYTE(x, 0, 1)] = 0x00;
eframe[CMD_BYTE(x, 1, 1)] = 0x00;
eframe[CMD_BYTE(x, 2, 1)] = 0x00;
}
}
/* Add our leds in */
for (x = 0; x < 7; x++)
eframe[CMD_BYTE(x, 0, 1)] |= leds;
}
static inline int t1_setreg(struct t1 *wc, int addr, int val)
{
struct command *cmd;
cmd = get_free_cmd(wc);
if (!cmd) {
WARN_ON(1);
return -ENOMEM;
}
cmd->address = addr;
cmd->data = val;
cmd->flags |= __CMD_WR;
submit_cmd(wc, cmd);
return 0;
}
static void __t1_getreg(struct t1 *wc, int addr, struct command *cmd)
{
cmd->address = addr;
cmd->data = 0x00;
cmd->flags = __CMD_RD;
submit_cmd(wc, cmd);
}
static int __t1_getresult(struct t1 *wc, struct command *cmd)
{
int ret;
unsigned long flags;
might_sleep();
if (test_bit(IOERROR, &wc->bit_flags)) {
spin_lock_irqsave(&wc->reglock, flags);
list_del_init(&cmd->node);
spin_unlock_irqrestore(&wc->reglock, flags);
if (printk_ratelimit()) {
dev_warn(&wc->vb.pdev->dev,
"Timeout in %s\n", __func__);
}
return -EIO;
}
ret = wait_for_completion_interruptible_timeout(&cmd->complete, HZ*10);
if (unlikely(!ret)) {
spin_lock_irqsave(&wc->reglock, flags);
if (!list_empty(&cmd->node)) {
/* Since we've removed this command from the list, we
* can go ahead and free it right away. */
list_del_init(&cmd->node);
spin_unlock_irqrestore(&wc->reglock, flags);
if (-ERESTARTSYS != ret) {
if (printk_ratelimit()) {
dev_warn(&wc->vb.pdev->dev,
"Timeout in %s\n", __func__);
}
ret = -EIO;
set_bit(IOERROR, &wc->bit_flags);
}
return ret;
} else {
/* Looks like this command was removed from the list by
* someone else already. Let's wait for them to complete
* it so that we don't free up the memory. */
spin_unlock_irqrestore(&wc->reglock, flags);
ret = wait_for_completion_timeout(&cmd->complete, HZ*2);
WARN_ON(!ret);
ret = cmd->data;
return ret;
}
}
ret = cmd->data;
return ret;
}
static int t1_getreg(struct t1 *wc, int addr)
{
int res;
struct command *cmd = NULL;
cmd = get_free_cmd(wc);
if (!cmd)
return -ENOMEM;
__t1_getreg(wc, addr, cmd);
res = __t1_getresult(wc, cmd);
free_cmd(wc, cmd);
return res;
}
static void t1_setleds(struct t1 *wc, int leds)
{
struct command *cmd;
leds = (~leds) & 0x0E; /* invert the LED bits (3 downto 1)*/
cmd = get_free_cmd(wc);
if (!cmd)
return;
cmd->flags |= __CMD_LEDS;
cmd->address = leds;
submit_cmd(wc, cmd);
}
/**
* t1_getpins - Returns the value of the jumpers on the card.
* @wc: The card to read from.
* @pins: Pointer to u8 character to hold the pins value.
*
* Returns 0 on success, otherwise an error code.
*
*/
static int t1_getpins(struct t1 *wc, u8 *pins)
{
struct command *cmd;
unsigned long flags;
unsigned long ret;
*pins = 0;
cmd = get_free_cmd(wc);
BUG_ON(!cmd);
cmd->address = 0x00;
cmd->data = 0x00;
cmd->flags = __CMD_PINS;
submit_cmd(wc, cmd);
ret = wait_for_completion_interruptible_timeout(&cmd->complete, HZ*2);
if (unlikely(!ret)) {
spin_lock_irqsave(&wc->reglock, flags);
list_del_init(&cmd->node);
spin_unlock_irqrestore(&wc->reglock, flags);
free_cmd(wc, cmd);
if (-ERESTARTSYS != ret) {
if (printk_ratelimit()) {
dev_warn(&wc->vb.pdev->dev,
"Timeout in %s\n", __func__);
}
ret = -EIO;
}
return ret;
}
*pins = cmd->data;
free_cmd(wc, cmd);
return 0;
}
static void __t1xxp_set_clear(struct t1 *wc)
{
int i, offset;
int ret;
unsigned short reg[3] = {0, 0, 0};
/* Calculate all states on all 24 channels using the channel
flags, then write all 3 clear channel registers at once */
for (i = 0; i < wc->span.channels; i++) {
offset = i/8;
if (wc->span.chans[i]->flags & DAHDI_FLAG_CLEAR)
reg[offset] |= 1 << (7 - (i % 8));
else
reg[offset] &= ~(1 << (7 - (i % 8)));
}
ret = t1_setreg(wc, CCB1, reg[0]);
if (ret < 0)
t1_info(wc, "Unable to set clear/rbs mode!\n");
ret = t1_setreg(wc, CCB2, reg[1]);
if (ret < 0)
t1_info(wc, "Unable to set clear/rbs mode!\n");
ret = t1_setreg(wc, CCB3, reg[2]);
if (ret < 0)
t1_info(wc, "Unable to set clear/rbs mode!\n");
}
/**
* _t1_free_channels - Free the memory allocated for the channels.
*
* Must be called with wc->reglock held.
*
*/
static void _t1_free_channels(struct t1 *wc)
{
int x;
for (x = 0; x < ARRAY_SIZE(wc->chans); x++) {
kfree(wc->chans[x]);
kfree(wc->ec[x]);
wc->chans[x] = NULL;
wc->ec[x] = NULL;
}
}
static void free_wc(struct t1 *wc)
{
unsigned long flags;
struct command *cmd;
LIST_HEAD(list);
spin_lock_irqsave(&wc->reglock, flags);
_t1_free_channels(wc);
list_splice_init(&wc->active_cmds, &list);
list_splice_init(&wc->pending_cmds, &list);
spin_unlock_irqrestore(&wc->reglock, flags);
while (!list_empty(&list)) {
cmd = list_entry(list.next, struct command, node);
list_del_init(&cmd->node);
free_cmd(wc, cmd);
}
if (wc->wq)
destroy_workqueue(wc->wq);
#ifdef CONFIG_VOICEBUS_ECREFERENCE
for (x = 0; x < ARRAY_SIZE(wc->ec_reference); ++x) {
if (wc->ec_reference[x])
dahdi_fifo_free(wc->ec_reference[x]);
}
#endif
kfree(wc->ddev->location);
kfree(wc->ddev->devicetype);
dahdi_free_device(wc->ddev);
kfree(wc);
}
/**
* t1_reset_registers - Put register back to their default values
*
* Since the card does not have an ability to reset just the framer
* specifically, we need to write all the default values to the framer.
*
*/
static void t1_reset_registers(struct t1 *wc)
{
int i;
struct t1_reg {
u8 address;
u8 value;
} __attribute__((packed));
struct t1_reg *reg;
static struct t1_reg DEFAULT_REGS[] = {
{0x00, 0x7d}, {0x01, 0x7d}, {0x02, 0x00}, {0x03, 0x00},
{0x04, 0xfd}, {0x05, 0xff}, {0x06, 0xff}, {0x07, 0xff},
{0x08, 0x05}, {0x09, 0x00}, {0x0a, 0x00}, {0x0b, 0x00},
{0x0c, 0x00}, {0x0d, 0x00}, {0x0e, 0x00}, {0x0f, 0x00},
{0x10, 0x00}, {0x11, 0x00}, {0x12, 0x00}, {0x13, 0x00},
{0x14, 0xff}, {0x15, 0xff}, {0x16, 0xff}, {0x17, 0xff},
{0x18, 0xff}, {0x19, 0xff}, {0x1a, 0x00}, {0x1b, 0x00},
{0x1c, 0x00}, {0x1d, 0x00}, {0x1e, 0x00}, {0x1f, 0x00},
{0x20, 0x00}, {0x21, 0x00}, {0x22, 0x00}, {0x23, 0x04},
{0x24, 0x00}, {0x25, 0x05}, {0x26, 0x7b}, {0x27, 0x03},
{0x28, 0x40}, {0x29, 0x00}, {0x2a, 0x00}, {0x2b, 0x00},
{0x2c, 0x00}, {0x2d, 0x00}, {0x2e, 0x00}, {0x2f, 0x00},
{0x30, 0x00}, {0x31, 0x00}, {0x32, 0x00}, {0x33, 0x00},
{0x34, 0x00}, {0x35, 0x00}, {0x36, 0x00}, {0x37, 0x80},
{0x38, 0x00}, {0x39, 0x00}, {0x3a, 0x20}, {0x3b, 0x00},
{0x3c, 0x00}, {0x3d, 0x00}, {0x3e, 0x0a}, {0x3f, 0x00},
{0x40, 0x04}, {0x41, 0x00}, {0x42, 0x00}, {0x43, 0x00},
{0x44, 0x30}, {0x45, 0x00}, {0x46, 0xc0}, {0x47, 0xff},
{0x48, 0x00}, {0x49, 0x1c}, {0x4a, 0x05}, {0x4b, 0x03},
{0x4c, 0xa3}, {0x4d, 0x28}, {0x4e, 0x00}, {0x4f, 0xc0},
{0x50, 0x00}, {0x51, 0x00}, {0x52, 0x00}, {0x53, 0x00},
{0x54, 0x00}, {0x55, 0x00}, {0x56, 0x00}, {0x57, 0x00},
{0x58, 0x00}, {0x59, 0x00}, {0x5a, 0x00}, {0x5b, 0x00},
{0x5c, 0x00}, {0x5d, 0x00}, {0x5e, 0x00}, {0x5f, 0x00},
{0x60, 0x00}, {0x61, 0x20}, {0x62, 0x00}, {0x63, 0x00},
{0x64, 0x5a}, {0x65, 0x02}, {0x66, 0x00}, {0x67, 0x00},
{0x68, 0x10}, {0x69, 0x09}, {0x6a, 0x00}, {0x6b, 0x03},
{0x6c, 0x00}, {0x6d, 0xc0}, {0x6e, 0x40}, {0x6f, 0x00},
{0x70, 0x00}, {0x71, 0x00}, {0x72, 0x00}, {0x73, 0x00},
{0x74, 0x00}, {0x75, 0x00}, {0x76, 0x00}, {0x77, 0x00},
{0x78, 0x00}, {0x79, 0x00}, {0x7a, 0x00}, {0x7b, 0x00},
{0x7c, 0x00}, {0x7d, 0x00}, {0x7e, 0x00}, {0x7f, 0x00},
{0x80, 0x00}, {0x81, 0x22}, {0x82, 0x65}, {0x83, 0x35},
{0x84, 0x31}, {0x85, 0x60}, {0x86, 0x03}, {0x87, 0x00},
{0x88, 0x00}, {0x89, 0x00}, {0x8a, 0x00}, {0x8b, 0x00},
{0x8c, 0x00}, {0x8d, 0x00}, {0x8e, 0x00}, {0x8f, 0x00},
{0x90, 0x00}, {0x91, 0x00}, {0x92, 0x00}, {0x93, 0x18},
{0x94, 0xfb}, {0x95, 0x0b}, {0x96, 0x00}, {0x97, 0x0b},
{0x98, 0xdb}, {0x99, 0xdf}, {0x9a, 0x48}, {0x9b, 0x00},
{0x9c, 0x3f}, {0x9d, 0x3f}, {0x9e, 0x77}, {0x9f, 0x77},
{0xa0, 0x00}, {0xa1, 0xff}, {0xa2, 0xff}, {0xa3, 0xff},
{0xa4, 0x00}, {0xa5, 0x00}, {0xa6, 0x00}, {0xa7, 0x00},
{0xa8, 0x00}
};
for (i = 0; i < ARRAY_SIZE(DEFAULT_REGS); ++i) {
reg = &DEFAULT_REGS[i];
t1_setreg(wc, reg->address, reg->value);
}
/* Flush previous writes. */
t1_getreg(wc, 0x1d);
}
static void t4_serial_setup(struct t1 *wc)
{
t1_setreg(wc, 0x85, 0xe0); /* GPC1: Multiplex mode enabled, FSC is output, active low, RCLK from channel 0 */
t1_setreg(wc, 0x08, 0x05); /* IPC: Interrupt push/pull active low */
/* Global clocks (8.192 Mhz CLK) */
t1_setreg(wc, 0x92, 0x00);
t1_setreg(wc, 0x93, 0x18);
t1_setreg(wc, 0x94, 0xfb);
t1_setreg(wc, 0x95, 0x0b);
t1_setreg(wc, 0x96, 0x00);
t1_setreg(wc, 0x97, 0x0b);
t1_setreg(wc, 0x98, 0xdb);
t1_setreg(wc, 0x99, 0xdf);
/* Configure interrupts */
t1_setreg(wc, 0x46, 0xc0); /* GCR: Interrupt on Activation/Deactivation of AIX, LOS */
/* Configure system interface */
t1_setreg(wc, 0x3e, 0x0a /* 0x02 */); /* SIC1: 4.096 Mhz clock/bus, double buffer receive / transmit, byte interleaved */
t1_setreg(wc, 0x3f, 0x00); /* SIC2: No FFS, no center receive eliastic buffer, phase 0 */
t1_setreg(wc, 0x40, 0x04); /* SIC3: Edges for capture */
t1_setreg(wc, 0x44, 0x30); /* CMR1: RCLK is at 8.192 Mhz dejittered */
t1_setreg(wc, 0x45, 0x00); /* CMR2: We provide sync and clock for tx and rx. */
t1_setreg(wc, 0x22, 0x00); /* XC0: Normal operation of Sa-bits */
t1_setreg(wc, 0x23, 0x04); /* XC1: 0 offset */
t1_setreg(wc, 0x24, 0x00); /* RC0: Just shy of 255 */
t1_setreg(wc, 0x25, 0x05); /* RC1: The rest of RC0 */
/* Configure ports */
t1_setreg(wc, 0x80, 0x00); /* PC1: SPYR/SPYX input on RPA/XPA */
t1_setreg(wc, 0x81, 0x22); /* PC2: RMFB/XSIG output/input on RPB/XPB */
t1_setreg(wc, 0x82, 0x65); /* PC3: Some unused stuff */
t1_setreg(wc, 0x83, 0x35); /* PC4: Some more unused stuff */
t1_setreg(wc, 0x84, 0x31); /* PC5: XMFS active low, SCLKR is input, RCLK is output */
t1_setreg(wc, 0x86, 0x03); /* PC6: CLK1 is Tx Clock output, CLK2 is 8.192 Mhz from DCO-R */
t1_setreg(wc, 0x3b, 0x00); /* Clear LCR1 */
}
static void t1_configure_t1(struct t1 *wc, int lineconfig, int txlevel)
{
unsigned int fmr4, fmr2, fmr1, fmr0, lim2;
char *framing, *line;
int mytxlevel;
if ((txlevel > 7) || (txlevel < 4))
mytxlevel = 0;
else
mytxlevel = txlevel - 4;
fmr1 = 0x9e; /* FMR1: Mode 0, T1 mode, CRC on for ESF, 2.048 Mhz system data rate, no XAIS */
fmr2 = 0x20; /* FMR2: no payload loopback, don't auto yellow alarm */
if (SPANTYPE_DIGITAL_J1 == wc->span.spantype)
fmr4 = 0x1c;
else
fmr4 = 0x0c; /* FMR4: Lose sync on 2 out of 5 framing bits, auto resync */
lim2 = 0x21; /* LIM2: 50% peak is a "1", Advanced Loss recovery */
lim2 |= (mytxlevel << 6); /* LIM2: Add line buildout */
t1_setreg(wc, 0x1d, fmr1);
t1_setreg(wc, 0x1e, fmr2);
/* Configure line interface */
if (lineconfig & DAHDI_CONFIG_AMI) {
line = "AMI";
fmr0 = 0xa0;
} else {
line = "B8ZS";
fmr0 = 0xf0;
}
if (lineconfig & DAHDI_CONFIG_D4) {
framing = "D4";
} else {
framing = "ESF";
fmr4 |= 0x2;
fmr2 |= 0xc0;
}
t1_setreg(wc, 0x1c, fmr0);
t1_setreg(wc, 0x20, fmr4);
t1_setreg(wc, 0x21, 0x40); /* FMR5: Enable RBS mode */
t1_setreg(wc, 0x37, 0xf8); /* LIM1: Clear data in case of LOS, Set receiver threshold (0.5V), No remote loop, no DRS */
t1_setreg(wc, 0x36, 0x08); /* LIM0: Enable auto long haul mode, no local loop (must be after LIM1) */
t1_setreg(wc, 0x02, 0x50); /* CMDR: Reset the receiver and transmitter line interface */
t1_setreg(wc, 0x02, 0x00); /* CMDR: Reset the receiver and transmitter line interface */
t1_setreg(wc, 0x3a, lim2); /* LIM2: 50% peak amplitude is a "1" */
t1_setreg(wc, 0x38, 0x0a); /* PCD: LOS after 176 consecutive "zeros" */
t1_setreg(wc, 0x39, 0x15); /* PCR: 22 "ones" clear LOS */
if (SPANTYPE_DIGITAL_J1 == wc->span.spantype)
t1_setreg(wc, 0x24, 0x80); /* J1 overide */
/* Generate pulse mask for T1 */
switch (mytxlevel) {
case 3:
t1_setreg(wc, 0x26, 0x07); /* XPM0 */
t1_setreg(wc, 0x27, 0x01); /* XPM1 */
t1_setreg(wc, 0x28, 0x00); /* XPM2 */
break;
case 2:
t1_setreg(wc, 0x26, 0x8c); /* XPM0 */
t1_setreg(wc, 0x27, 0x11); /* XPM1 */
t1_setreg(wc, 0x28, 0x01); /* XPM2 */
break;
case 1:
t1_setreg(wc, 0x26, 0x8c); /* XPM0 */
t1_setreg(wc, 0x27, 0x01); /* XPM1 */
t1_setreg(wc, 0x28, 0x00); /* XPM2 */
break;
case 0:
default:
t1_setreg(wc, 0x26, 0xd7); /* XPM0 */
t1_setreg(wc, 0x27, 0x22); /* XPM1 */
t1_setreg(wc, 0x28, 0x01); /* XPM2 */
break;
}
if (debug)
t1_info(wc, "Span configured for %s/%s\n", framing, line);
}
static void t1_configure_e1(struct t1 *wc, int lineconfig)
{
unsigned int fmr2, fmr1, fmr0;
unsigned int cas = 0;
char *crc4 = "";
char *framing, *line;
fmr1 = 0x46; /* FMR1: E1 mode, Automatic force resync, PCM30 mode, 8.192 Mhz backplane, no XAIS */
fmr2 = 0x03; /* FMR2: Auto transmit remote alarm, auto loss of multiframe recovery, no payload loopback */
if (lineconfig & DAHDI_CONFIG_CRC4) {
fmr1 |= 0x08; /* CRC4 transmit */
fmr2 |= 0xc0; /* CRC4 receive */
crc4 = "/CRC4";
}
t1_setreg(wc, 0x1d, fmr1);
t1_setreg(wc, 0x1e, fmr2);
/* Configure line interface */
if (lineconfig & DAHDI_CONFIG_AMI) {
line = "AMI";
fmr0 = 0xa0;
} else {
line = "HDB3";
fmr0 = 0xf0;
}
if (lineconfig & DAHDI_CONFIG_CCS) {
framing = "CCS";
} else {
framing = "CAS";
cas = 0x40;
}
t1_setreg(wc, 0x1c, fmr0);
t1_setreg(wc, 0x37, 0xf0 /*| 0x6 */ ); /* LIM1: Clear data in case of LOS, Set receiver threshold (0.5V), No remote loop, no DRS */
t1_setreg(wc, 0x36, 0x08); /* LIM0: Enable auto long haul mode, no local loop (must be after LIM1) */
t1_setreg(wc, 0x02, 0x50); /* CMDR: Reset the receiver and transmitter line interface */
t1_setreg(wc, 0x02, 0x00); /* CMDR: Reset the receiver and transmitter line interface */
/* Condition receive line interface for E1 after reset */
t1_setreg(wc, 0xbb, 0x17);
t1_setreg(wc, 0xbc, 0x55);
t1_setreg(wc, 0xbb, 0x97);
t1_setreg(wc, 0xbb, 0x11);
t1_setreg(wc, 0xbc, 0xaa);
t1_setreg(wc, 0xbb, 0x91);
t1_setreg(wc, 0xbb, 0x12);
t1_setreg(wc, 0xbc, 0x55);
t1_setreg(wc, 0xbb, 0x92);
t1_setreg(wc, 0xbb, 0x0c);
t1_setreg(wc, 0xbb, 0x00);
t1_setreg(wc, 0xbb, 0x8c);
t1_setreg(wc, 0x3a, 0x20); /* LIM2: 50% peak amplitude is a "1" */
t1_setreg(wc, 0x38, 0x0a); /* PCD: LOS after 176 consecutive "zeros" */
t1_setreg(wc, 0x39, 0x15); /* PCR: 22 "ones" clear LOS */
t1_setreg(wc, 0x20, 0x9f); /* XSW: Spare bits all to 1 */
t1_setreg(wc, 0x21, 0x1c|cas); /* XSP: E-bit set when async. AXS
auto, XSIF to 1 */
/* Generate pulse mask for E1 */
t1_setreg(wc, 0x26, 0x54); /* XPM0 */
t1_setreg(wc, 0x27, 0x02); /* XPM1 */
t1_setreg(wc, 0x28, 0x00); /* XPM2 */
t1_info(wc, "Span configured for %s/%s%s\n", framing, line, crc4);
}
static void t1xxp_framer_start(struct t1 *wc)
{
if (dahdi_is_e1_span(&wc->span)) {
t1_configure_e1(wc, wc->span.lineconfig);
} else { /* is a T1 card */
t1_configure_t1(wc, wc->span.lineconfig, wc->span.txlevel);
__t1xxp_set_clear(wc);
}
set_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags);
}
static void set_span_devicetype(struct t1 *wc)
{
const char *olddevicetype;
olddevicetype = wc->ddev->devicetype;
#if defined(VPM_SUPPORT)
if (wc->vpmadt032) {
wc->ddev->devicetype = kasprintf(GFP_KERNEL,
"%s (VPMADT032)", wc->variety);
} else if (wc->vpmoct) {
wc->ddev->devicetype = kasprintf(GFP_KERNEL,
"%s (VPMOCT032)", wc->variety);
} else {
wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s", wc->variety);
}
#else
wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s", wc->variety);
#endif
/* On the off chance that we were able to allocate it previously. */
if (!wc->ddev->devicetype)
wc->ddev->devicetype = olddevicetype;
else
kfree(olddevicetype);
}
static int t1xxp_startup(struct file *file, struct dahdi_span *span)
{
struct t1 *wc = container_of(span, struct t1, span);
#ifndef CONFIG_VOICEBUS_ECREFERENCE
unsigned int i;
#endif
set_span_devicetype(wc);
#ifndef CONFIG_VOICEBUS_ECREFERENCE
/* initialize the start value for the entire chunk of last ec buffer */
for (i = 0; i < span->channels; i++) {
memset(wc->ec_chunk1[i], DAHDI_LIN2X(0, span->chans[i]), DAHDI_CHUNKSIZE);
memset(wc->ec_chunk2[i], DAHDI_LIN2X(0, span->chans[i]), DAHDI_CHUNKSIZE);
}
#endif
/* Reset framer with proper parameters and start */
t1xxp_framer_start(wc);
debug_printk(wc, 1, "Calling startup (flags is %lu)\n", span->flags);
return 0;
}
static inline bool is_initialized(struct t1 *wc)
{
WARN_ON(wc->not_ready < 0);
return (wc->not_ready == 0);
}
/**
* t1_wait_for_ready
*
* Check if the board has finished any setup and is ready to start processing
* calls.
*/
static int t1_wait_for_ready(struct t1 *wc)
{
while (!is_initialized(wc)) {
if (fatal_signal_pending(current))
return -EIO;
msleep_interruptible(250);
}
return 0;
}
static int t1xxp_chanconfig(struct file *file,
struct dahdi_chan *chan, int sigtype)
{
struct t1 *wc = chan->pvt;
if (file->f_flags & O_NONBLOCK && !is_initialized(wc)) {
return -EAGAIN;
} else {
t1_wait_for_ready(wc);
}
if (test_bit(DAHDI_FLAGBIT_RUNNING, &chan->span->flags) &&
dahdi_is_t1_span(&wc->span)) {
__t1xxp_set_clear(wc);
}
return 0;
}
static int t1xxp_rbsbits(struct dahdi_chan *chan, int bits)
{
u_char m,c;
int n,b;
struct t1 *wc = chan->pvt;
unsigned long flags;
debug_printk(wc, 2, "Setting bits to %d on channel %s\n",
bits, chan->name);
if (dahdi_is_e1_span(&wc->span)) { /* do it E1 way */
if (chan->chanpos == 16)
return 0;
n = chan->chanpos - 1;
if (chan->chanpos > 15) n--;
b = (n % 15);
spin_lock_irqsave(&wc->reglock, flags);
c = wc->txsigs[b];
m = (n / 15) << 2; /* nibble selector */
c &= (0xf << m); /* keep the other nibble */
c |= (bits & 0xf) << (4 - m); /* put our new nibble here */
wc->txsigs[b] = c;
spin_unlock_irqrestore(&wc->reglock, flags);
/* output them to the chip */
t1_setreg(wc, 0x71 + b, c);
} else if (wc->span.lineconfig & DAHDI_CONFIG_D4) {
n = chan->chanpos - 1;
b = (n / 4);
spin_lock_irqsave(&wc->reglock, flags);
c = wc->txsigs[b];
m = ((3 - (n % 4)) << 1); /* nibble selector */
c &= ~(0x3 << m); /* keep the other nibble */
c |= ((bits >> 2) & 0x3) << m; /* put our new nibble here */
wc->txsigs[b] = c;
spin_unlock_irqrestore(&wc->reglock, flags);
/* output them to the chip */
t1_setreg(wc, 0x70 + b, c);
t1_setreg(wc, 0x70 + b + 6, c);
} else if (wc->span.lineconfig & DAHDI_CONFIG_ESF) {
n = chan->chanpos - 1;
b = (n / 2);
spin_lock_irqsave(&wc->reglock, flags);
c = wc->txsigs[b];
m = ((n % 2) << 2); /* nibble selector */
c &= (0xf << m); /* keep the other nibble */
c |= (bits & 0xf) << (4 - m); /* put our new nibble here */
wc->txsigs[b] = c;
spin_unlock_irqrestore(&wc->reglock, flags);
/* output them to the chip */
t1_setreg(wc, 0x70 + b, c);
}
debug_printk(wc, 2, "Finished setting RBS bits\n");
return 0;
}
static void t1_check_sigbits(struct t1 *wc)
{
struct command_container {
struct command *cmd;
struct list_head node;
unsigned int index;
};
struct command_container *cont;
LIST_HEAD(commands);
int a,i,rxs;
if (!(test_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags)))
return;
if (dahdi_is_e1_span(&wc->span)) {
/* Send out all the commands first. */
for (i = 0; i < 15; i++) {
if (!(wc->span.chans[i+16]->sig & DAHDI_SIG_CLEAR) ||
!(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR)) {
cont = kzalloc(sizeof(*cont), GFP_KERNEL);
if (!cont) {
WARN_ON_ONCE(1);
goto done;
}
cont->cmd = get_free_cmd(wc);
if (!cont->cmd) {
WARN_ON_ONCE(1);
goto done;
}
cont->index = i;
list_add_tail(&cont->node, &commands);
__t1_getreg(wc, 0x71 + i, cont->cmd);
}
}
/* Now check the results */
list_for_each_entry_reverse(cont, &commands, node) {
i = cont->index;
a = __t1_getresult(wc, cont->cmd);
free_cmd(wc, cont->cmd);
cont->cmd = NULL;
if (a > -1) {
/* Get high channel in low bits */
rxs = (a & 0xf);
if (!(wc->span.chans[i+16]->sig & DAHDI_SIG_CLEAR)) {
if (wc->span.chans[i+16]->rxsig != rxs) {
dahdi_rbsbits(wc->span.chans[i+16], rxs);
}
}
rxs = (a >> 4) & 0xf;
if (!(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR)) {
if (wc->span.chans[i]->rxsig != rxs) {
dahdi_rbsbits(wc->span.chans[i], rxs);
}
}
}
}
} else if (wc->span.lineconfig & DAHDI_CONFIG_D4) {
/* First we'll send out the commands */
for (i = 0; i < 24; i += 4) {
cont = kzalloc(sizeof(*cont), GFP_KERNEL);
if (!cont) {
WARN_ON_ONCE(1);
goto done;
}
cont->cmd = get_free_cmd(wc);
if (!cont->cmd) {
WARN_ON_ONCE(1);
goto done;
}
cont->index = i;
list_add_tail(&cont->node, &commands);
__t1_getreg(wc, 0x70 + (i>>2), cont->cmd);
}
/* Now we'll check the results */
list_for_each_entry_reverse(cont, &commands, node) {
i = cont->index;
a = __t1_getresult(wc, cont->cmd);
free_cmd(wc, cont->cmd);
cont->cmd = NULL;
if (a > -1) {
/* Get high channel in low bits */
rxs = (a & 0x3) << 2;
if (!(wc->span.chans[i+3]->sig & DAHDI_SIG_CLEAR)) {
if (wc->span.chans[i+3]->rxsig != rxs) {
dahdi_rbsbits(wc->span.chans[i+3], rxs);
}
}
rxs = (a & 0xc);
if (!(wc->span.chans[i+2]->sig & DAHDI_SIG_CLEAR)) {
if (wc->span.chans[i+2]->rxsig != rxs) {
dahdi_rbsbits(wc->span.chans[i+2], rxs);
}
}
rxs = (a >> 2) & 0xc;
if (!(wc->span.chans[i+1]->sig & DAHDI_SIG_CLEAR)) {
if (wc->span.chans[i+1]->rxsig != rxs) {
dahdi_rbsbits(wc->span.chans[i+1], rxs);
}
}
rxs = (a >> 4) & 0xc;
if (!(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR)) {
if (wc->span.chans[i]->rxsig != rxs) {
dahdi_rbsbits(wc->span.chans[i], rxs);
}
}
}
}
} else {
/* First send out the commands. */
for (i = 0; i < 24; i += 2) {
cont = kzalloc(sizeof(*cont), GFP_KERNEL);
if (!cont) {
WARN_ON_ONCE(1);
goto done;
}
cont->cmd = get_free_cmd(wc);
if (!cont->cmd) {
WARN_ON_ONCE(1);
goto done;
}
cont->index = i;
list_add_tail(&cont->node, &commands);
__t1_getreg(wc, 0x70 + (i>>1), cont->cmd);
}
list_for_each_entry_reverse(cont, &commands, node) {
i = cont->index;
a = __t1_getresult(wc, cont->cmd);
free_cmd(wc, cont->cmd);
cont->cmd = NULL;
if (a > -1) {
/* Get high channel in low bits */
rxs = (a & 0xf);
if (!(wc->span.chans[i+1]->sig & DAHDI_SIG_CLEAR)) {
if (wc->span.chans[i+1]->rxsig != rxs) {
dahdi_rbsbits(wc->span.chans[i+1], rxs);
}
}
rxs = (a >> 4) & 0xf;
if (!(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR)) {
if (wc->span.chans[i]->rxsig != rxs) {
dahdi_rbsbits(wc->span.chans[i], rxs);
}
}
}
}
}
done:
while (!list_empty(&commands)) {
cont = container_of(commands.next,
struct command_container, node);
if (unlikely(cont->cmd)) {
/* We do not care about the result, let's just wait for
* the rest of the system to finish with it. */
__t1_getresult(wc, cont->cmd);
free_cmd(wc, cont->cmd);
cont->cmd = NULL;
}
list_del(&cont->node);
kfree(cont);
}
return;
}
struct maint_work_struct {
struct work_struct work;
struct t1 *wc;
int cmd;
struct dahdi_span *span;
};
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void t1xxp_maint_work(void *data)
{
struct maint_work_struct *w = data;
#else
static void t1xxp_maint_work(struct work_struct *work)
{
struct maint_work_struct *w = container_of(work,
struct maint_work_struct, work);
#endif
struct t1 *wc = w->wc;
struct dahdi_span *span = w->span;
int reg = 0;
int cmd = w->cmd;
if (dahdi_is_e1_span(&wc->span)) {
switch (cmd) {
case DAHDI_MAINT_NONE:
t1_info(wc, "Clearing all maint modes\n");
t1xxp_clear_maint(span);
break;
case DAHDI_MAINT_LOCALLOOP:
t1xxp_clear_maint(span);
reg = t1_getreg(wc, LIM0);
if (reg < 0)
goto cleanup;
t1_setreg(wc, LIM0, reg | LIM0_LL);
break;
case DAHDI_MAINT_REMOTELOOP:
case DAHDI_MAINT_LOOPUP:
case DAHDI_MAINT_LOOPDOWN:
t1_info(wc, "Only local loop supported in E1 mode\n");
goto cleanup;
default:
t1_info(wc, "Unknown E1 maint command: %d\n", cmd);
goto cleanup;
}
} else {
switch (cmd) {
case DAHDI_MAINT_NONE:
t1xxp_clear_maint(span);
break;
case DAHDI_MAINT_LOCALLOOP:
t1xxp_clear_maint(span);
reg = t1_getreg(wc, LIM0);
if (reg < 0)
goto cleanup;
t1_setreg(wc, LIM0, reg | LIM0_LL);
break;
case DAHDI_MAINT_NETWORKLINELOOP:
t1xxp_clear_maint(span);
reg = t1_getreg(wc, LIM1);
if (reg < 0)
goto cleanup;
t1_setreg(wc, LIM1, reg | LIM1_RL);
break;
case DAHDI_MAINT_NETWORKPAYLOADLOOP:
t1xxp_clear_maint(span);
reg = t1_getreg(wc, LIM1);
if (reg < 0)
goto cleanup;
t1_setreg(wc, LIM1, reg | (LIM1_RL | LIM1_JATT));
break;
case DAHDI_MAINT_LOOPUP:
t1xxp_clear_maint(span);
t1_setreg(wc, 0x21, 0x50);
break;
case DAHDI_MAINT_LOOPDOWN:
t1xxp_clear_maint(span);
t1_setreg(wc, 0x21, 0x60);
break;
default:
t1_info(wc, "Unknown T1 maint command: %d\n", cmd);
return;
}
}
cleanup:
kfree(w);
return;
}
static int t1xxp_maint(struct dahdi_span *span, int cmd)
{
struct maint_work_struct *work;
struct t1 *wc = container_of(span, struct t1, span);
if (dahdi_is_e1_span(&wc->span)) {
switch (cmd) {
case DAHDI_MAINT_NONE:
case DAHDI_MAINT_LOCALLOOP:
break;
case DAHDI_MAINT_REMOTELOOP:
case DAHDI_MAINT_LOOPUP:
case DAHDI_MAINT_LOOPDOWN:
t1_info(wc, "Only local loop supported in E1 mode\n");
return -ENOSYS;
default:
t1_info(wc, "Unknown E1 maint command: %d\n", cmd);
return -ENOSYS;
}
} else {
switch (cmd) {
case DAHDI_MAINT_NONE:
case DAHDI_MAINT_LOCALLOOP:
case DAHDI_MAINT_NETWORKLINELOOP:
case DAHDI_MAINT_NETWORKPAYLOADLOOP:
case DAHDI_MAINT_LOOPUP:
case DAHDI_MAINT_LOOPDOWN:
break;
default:
t1_info(wc, "Unknown T1 maint command: %d\n", cmd);
return -ENOSYS;
}
}
work = kmalloc(sizeof(*work), GFP_ATOMIC);
if (!work) {
t1_info(wc, "Failed to allocate memory for workqueue\n");
return -ENOMEM;
}
work->span = span;
work->wc = wc;
work->cmd = cmd;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&work->work, t1xxp_maint_work, work);
#else
INIT_WORK(&work->work, t1xxp_maint_work);
#endif
queue_work(wc->wq, &work->work);
return 0;
}
static int t1xxp_clear_maint(struct dahdi_span *span)
{
struct t1 *wc = container_of(span, struct t1, span);
int reg = 0;
/* Turn off local loop */
reg = t1_getreg(wc, LIM0);
if (reg < 0)
return -EIO;
t1_setreg(wc, LIM0, reg & ~LIM0_LL);
/* Turn off remote loop & jitter attenuator */
reg = t1_getreg(wc, LIM1);
if (reg < 0)
return -EIO;
t1_setreg(wc, LIM1, reg & ~(LIM1_RL | LIM1_JATT));
/* Clear loopup/loopdown signals on the line */
t1_setreg(wc, 0x21, 0x40);
return 0;
}
static int t1xxp_ioctl(struct dahdi_chan *chan, unsigned int cmd, unsigned long data)
{
struct t4_regs regs;
unsigned int x;
struct t1 *wc;
switch (cmd) {
case WCT4_GET_REGS:
wc = chan->pvt;
for (x = 0; x < sizeof(regs.regs) / sizeof(regs.regs[0]); x++)
regs.regs[x] = t1_getreg(wc, x);
if (copy_to_user((void __user *) data, &regs, sizeof(regs)))
return -EFAULT;
break;
default:
return -ENOTTY;
}
return 0;
}
static const char *t1xxp_echocan_name(const struct dahdi_chan *chan)
{
struct t1 *wc = chan->pvt;
if (wc->vpmadt032)
return vpmadt032_name;
else if (wc->vpmoct)
return vpmoct_name;
return NULL;
}
static int t1xxp_echocan_create(struct dahdi_chan *chan,
struct dahdi_echocanparams *ecp,
struct dahdi_echocanparam *p,
struct dahdi_echocan_state **ec)
{
struct t1 *wc = chan->pvt;
enum adt_companding comp;
if (!vpmsupport || !test_bit(VPM150M_ACTIVE, &wc->ctlreg))
return -ENODEV;
if (wc->vpmadt032) {
*ec = wc->ec[chan->chanpos - 1];
(*ec)->ops = &vpm150m_ec_ops;
(*ec)->features = vpm150m_ec_features;
comp = (DAHDI_LAW_ALAW == chan->span->deflaw) ?
ADT_COMP_ALAW : ADT_COMP_ULAW;
return vpmadt032_echocan_create(wc->vpmadt032, chan->chanpos-1,
comp, ecp, p);
} else if (wc->vpmoct) {
/* Hookup legacy callbacks */
*ec = wc->ec[chan->chanpos - 1];
(*ec)->ops = &vpm150m_ec_ops;
(*ec)->features = vpm150m_ec_features;
return vpmoct_echocan_create(wc->vpmoct, chan->chanpos-1,
chan->span->deflaw);
} else {
return -ENODEV;
}
}
static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec)
{
struct t1 *wc = chan->pvt;
if (wc->vpmadt032)
vpmadt032_echocan_free(wc->vpmadt032, chan->chanpos - 1, ec);
else if (wc->vpmoct)
vpmoct_echocan_free(wc->vpmoct, chan->chanpos - 1);
}
static void
setchanconfig_from_state(struct vpmadt032 *vpm, int channel,
GpakChannelConfig_t *chanconfig)
{
GpakEcanParms_t *p;
BUG_ON(!vpm);
chanconfig->PcmInPortA = 3;
chanconfig->PcmInSlotA = (channel + 1) * 2;
chanconfig->PcmOutPortA = SerialPortNull;
chanconfig->PcmOutSlotA = (channel + 1) * 2;
chanconfig->PcmInPortB = 2;
chanconfig->PcmInSlotB = (channel + 1) * 2;
chanconfig->PcmOutPortB = 3;
chanconfig->PcmOutSlotB = (channel + 1) * 2;
chanconfig->ToneTypesA = Null_tone;
chanconfig->MuteToneA = Disabled;
chanconfig->FaxCngDetA = Disabled;
chanconfig->ToneTypesB = Null_tone;
chanconfig->EcanEnableA = Enabled;
chanconfig->EcanEnableB = Disabled;
chanconfig->MuteToneB = Disabled;
chanconfig->FaxCngDetB = Disabled;
chanconfig->SoftwareCompand = cmpNone;
chanconfig->FrameRate = rate10ms;
p = &chanconfig->EcanParametersA;
vpmadt032_get_default_parameters(p);
p->EcanNlpType = vpm->curecstate[channel].nlp_type;
p->EcanNlpThreshold = vpm->curecstate[channel].nlp_threshold;
p->EcanNlpMaxSuppress = vpm->curecstate[channel].nlp_max_suppress;
memcpy(&chanconfig->EcanParametersB,
&chanconfig->EcanParametersA,
sizeof(chanconfig->EcanParametersB));
}
#ifdef VPM_SUPPORT
struct vpm_load_work {
struct work_struct work;
struct t1 *wc;
};
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void vpm_load_func(void *data)
{
struct maint_work_struct *w = data;
#else
static void vpm_load_func(struct work_struct *work)
{
struct vpm_load_work *w = container_of(work,
struct vpm_load_work, work);
#endif
struct t1 *wc = w->wc;
int res;
res = vpmadt032_init(wc->vpmadt032);
if (res) {
/* There was some problem during initialization, but it passed
* the address test, let's try again in a bit. */
wc->vpm_check = jiffies + HZ/2;
return;
}
if (config_vpmadt032(wc->vpmadt032, wc)) {
clear_bit(VPM150M_ACTIVE, &wc->ctlreg);
wc->vpm_check = jiffies + HZ/2;
return;
}
/* turn on vpm (RX audio from vpm module) */
set_bit(VPM150M_ACTIVE, &wc->ctlreg);
wc->vpm_check = jiffies + HZ*5;
if (vpmtsisupport) {
debug_printk(wc, 1, "enabling VPM TSI pin\n");
/* turn on vpm timeslot interchange pin */
set_bit(0, &wc->ctlreg);
}
wc->not_ready--;
kfree(w);
}
static int vpm_start_load(struct t1 *wc)
{
struct vpm_load_work *work;
work = kzalloc(sizeof(*work), GFP_KERNEL);
if (!work)
return -ENOMEM;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&work->work, vpm_load_func, work);
#else
INIT_WORK(&work->work, vpm_load_func);
#endif
work->wc = wc;
queue_work(wc->wq, &work->work);
wc->not_ready++;
return 0;
}
static void t1_vpm_load_complete(struct device *dev, bool operational)
{
unsigned long flags;
struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
struct t1 *wc = pci_get_drvdata(pdev);
struct vpmoct *vpm = NULL;
if (!wc || is_initialized(wc)) {
WARN_ON(!wc);
return;
}
spin_lock_irqsave(&wc->reglock, flags);
wc->not_ready--;
if (operational) {
set_bit(VPM150M_ACTIVE, &wc->ctlreg);
} else {
clear_bit(VPM150M_ACTIVE, &wc->ctlreg);
vpm = wc->vpmoct;
wc->vpmoct = NULL;
}
spin_unlock_irqrestore(&wc->reglock, flags);
if (vpm)
vpmoct_free(vpm);
}
static void check_and_load_vpm(struct t1 *wc)
{
unsigned long flags;
struct vpmadt032_options options;
struct vpmadt032 *vpmadt = NULL;
if (!vpmsupport) {
t1_info(wc, "VPM Support Disabled via module parameter\n");
return;
}
memset(&options, 0, sizeof(options));
options.debug = debug;
options.vpmnlptype = vpmnlptype;
options.vpmnlpthresh = vpmnlpthresh;
options.vpmnlpmaxsupp = vpmnlpmaxsupp;
options.channels = dahdi_is_t1_span(&wc->span) ? 24 : 32;
/* We do not want to check that the VPM is alive until after we're
* done setting it up here, an hour should cover it... */
wc->vpm_check = jiffies + HZ*3600;
/* If there was one already allocated, let's free it. */
if (wc->vpmadt032) {
vpmadt = wc->vpmadt032;
clear_bit(VPM150M_ACTIVE, &vpmadt->control);
flush_workqueue(vpmadt->wq);
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmadt032 = NULL;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmadt032_free(vpmadt);
}
vpmadt = vpmadt032_alloc(&options);
if (!vpmadt)
return;
vpmadt->setchanconfig_from_state = setchanconfig_from_state;
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmadt032 = vpmadt;
spin_unlock_irqrestore(&wc->reglock, flags);
/* Probe for and attempt to load a vpmadt032 module */
if (vpmadt032_test(vpmadt, &wc->vb) || vpm_start_load(wc)) {
/* There does not appear to be a VPMADT032 installed. */
clear_bit(VPM150M_ACTIVE, &wc->ctlreg);
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmadt032 = NULL;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmadt032_free(vpmadt);
}
/* Probe for and attempt to load a vpmoct032 module */
if (NULL == wc->vpmadt032) {
struct vpmoct *vpmoct;
/* Check for vpmoct */
vpmoct = vpmoct_alloc();
if (!vpmoct)
return;
vpmoct->dev = &wc->vb.pdev->dev;
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmoct = vpmoct;
wc->not_ready++;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmoct_init(vpmoct, t1_vpm_load_complete);
}
set_span_devicetype(wc);
}
#else
static inline void check_and_load_vpm(const struct t1 *wc)
{
return;
}
#endif
static void t1_chan_set_sigcap(struct dahdi_span *span, int x)
{
struct t1 *wc = container_of(span, struct t1, span);
struct dahdi_chan *chan = wc->chans[x];
chan->sigcap = DAHDI_SIG_CLEAR;
/* E&M variant supported depends on span type */
if (dahdi_is_e1_span(&wc->span)) {
/* E1 sigcap setup */
if (span->lineconfig & DAHDI_CONFIG_CCS) {
/* CCS setup */
chan->sigcap |= DAHDI_SIG_MTP2 | DAHDI_SIG_SF;
return;
}
/* clear out sig and sigcap for channel 16 on E1 CAS
* lines, otherwise, set it correctly */
if (x == 15) {
/* CAS signaling channel setup */
wc->chans[15]->sigcap = 0;
wc->chans[15]->sig = 0;
return;
}
/* normal CAS setup */
chan->sigcap |= DAHDI_SIG_EM_E1 | DAHDI_SIG_FXSLS |
DAHDI_SIG_FXSGS | DAHDI_SIG_FXSKS | DAHDI_SIG_SF |
DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_FXOKS |
DAHDI_SIG_CAS | DAHDI_SIG_DACS_RBS;
} else {
/* T1 sigcap setup */
chan->sigcap |= DAHDI_SIG_EM | DAHDI_SIG_FXSLS |
DAHDI_SIG_FXSGS | DAHDI_SIG_FXSKS | DAHDI_SIG_MTP2 |
DAHDI_SIG_SF | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS |
DAHDI_SIG_FXOKS | DAHDI_SIG_CAS | DAHDI_SIG_DACS_RBS;
}
}
static int
t1xxp_spanconfig(struct file *file, struct dahdi_span *span,
struct dahdi_lineconfig *lc)
{
struct t1 *wc = container_of(span, struct t1, span);
int i;
if (file->f_flags & O_NONBLOCK) {
if (!is_initialized(wc))
return -EAGAIN;
} else {
t1_wait_for_ready(wc);
}
/* Do we want to SYNC on receive or not */
if (lc->sync) {
set_bit(7, &wc->ctlreg);
span->syncsrc = span->spanno;
} else {
clear_bit(7, &wc->ctlreg);
span->syncsrc = 0;
}
/* make sure that sigcaps gets updated if necessary */
for (i = 0; i < wc->span.channels; i++)
t1_chan_set_sigcap(span, i);
/* If already running, apply changes immediately */
if (test_bit(DAHDI_FLAGBIT_RUNNING, &span->flags))
return t1xxp_startup(file, span);
return 0;
}
static int t1xxp_enable_hw_preechocan(struct dahdi_chan *chan)
{
struct t1 *wc = chan->pvt;
if (!wc->vpmoct)
return 0;
return vpmoct_preecho_enable(wc->vpmoct, chan->chanpos - 1);
}
static void t1xxp_disable_hw_preechocan(struct dahdi_chan *chan)
{
struct t1 *wc = chan->pvt;
if (!wc->vpmoct)
return;
vpmoct_preecho_disable(wc->vpmoct, chan->chanpos - 1);
}
/**
* t1_software_init - Initialize the board for the given type.
* @wc: The board to initialize.
* @type: The type of board we are, T1 / E1
*
* This function is called at startup and when the type of the span is changed
* via the dahdi_device before the span is assigned a number.
*
*/
static int t1_software_init(struct t1 *wc, enum linemode type)
{
int x;
struct dahdi_chan *chans[32] = {NULL,};
struct dahdi_echocan_state *ec[32] = {NULL,};
unsigned long flags;
int res = 0;
/* We may already be setup properly. */
if (wc->span.channels == ((E1 == type) ? 31 : 24))
return 0;
for (x = 0; x < ((E1 == type) ? 31 : 24); x++) {
chans[x] = kzalloc(sizeof(*chans[x]), GFP_KERNEL);
ec[x] = kzalloc(sizeof(*ec[x]), GFP_KERNEL);
if (!chans[x] || !ec[x])
goto error_exit;
}
set_span_devicetype(wc);
/* Because the interrupt handler is running, we need to atomically
* swap the channel arrays. */
spin_lock_irqsave(&wc->reglock, flags);
_t1_free_channels(wc);
memcpy(wc->chans, chans, sizeof(wc->chans));
memcpy(wc->ec, ec, sizeof(wc->ec));
memset(chans, 0, sizeof(chans));
memset(ec, 0, sizeof(ec));
switch (type) {
case E1:
wc->span.channels = 31;
wc->span.spantype = SPANTYPE_DIGITAL_E1;
wc->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_HDB3 |
DAHDI_CONFIG_CCS | DAHDI_CONFIG_CRC4;
wc->span.deflaw = DAHDI_LAW_ALAW;
break;
case T1:
wc->span.channels = 24;
wc->span.spantype = SPANTYPE_DIGITAL_T1;
wc->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_B8ZS |
DAHDI_CONFIG_D4 | DAHDI_CONFIG_ESF;
wc->span.deflaw = DAHDI_LAW_MULAW;
break;
case J1:
wc->span.channels = 24;
wc->span.spantype = SPANTYPE_DIGITAL_J1;
wc->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_B8ZS |
DAHDI_CONFIG_D4 | DAHDI_CONFIG_ESF;
wc->span.deflaw = DAHDI_LAW_MULAW;
break;
default:
spin_unlock_irqrestore(&wc->reglock, flags);
res = -EINVAL;
goto error_exit;
}
spin_unlock_irqrestore(&wc->reglock, flags);
if (!wc->ddev->location)
return -ENOMEM;
t1_info(wc, "Setting up global serial parameters for %s\n",
dahdi_spantype2str(wc->span.spantype));
t4_serial_setup(wc);
set_bit(DAHDI_FLAGBIT_RBS, &wc->span.flags);
for (x = 0; x < wc->span.channels; x++) {
sprintf(wc->chans[x]->name, "%s/%d", wc->span.name, x + 1);
t1_chan_set_sigcap(&wc->span, x);
wc->chans[x]->pvt = wc;
wc->chans[x]->chanpos = x + 1;
}
check_and_load_vpm(wc);
set_span_devicetype(wc);
return 0;
error_exit:
for (x = 0; x < ARRAY_SIZE(chans); ++x) {
kfree(chans[x]);
kfree(ec[x]);
}
return res;
}
/**
* t1xx_set_linemode - Change the type of span before assignment.
* @span: The span to change.
* @linemode: Text string for the line mode.
*
* This function may be called after the dahdi_device is registered but
* before the spans are assigned numbers (and are visible to the rest of
* DAHDI).
*
*/
static int t1xxp_set_linemode(struct dahdi_span *span, enum spantypes linemode)
{
int res;
struct t1 *wc = container_of(span, struct t1, span);
/* We may already be set to the requested type. */
if (span->spantype == linemode)
return 0;
res = t1_wait_for_ready(wc);
if (res)
return res;
/* Stop the processing of the channels since we're going to change
* them. */
clear_bit(INITIALIZED, &wc->bit_flags);
synchronize_irq(wc->vb.pdev->irq);
smp_mb__after_atomic();
del_timer_sync(&wc->timer);
flush_workqueue(wc->wq);
t1_reset_registers(wc);
switch (linemode) {
case SPANTYPE_DIGITAL_T1:
dev_info(&wc->vb.pdev->dev,
"Changing from %s to T1 line mode.\n",
dahdi_spantype2str(wc->span.spantype));
res = t1_software_init(wc, T1);
break;
case SPANTYPE_DIGITAL_E1:
dev_info(&wc->vb.pdev->dev,
"Changing from %s to E1 line mode.\n",
dahdi_spantype2str(wc->span.spantype));
res = t1_software_init(wc, E1);
break;
case SPANTYPE_DIGITAL_J1:
dev_info(&wc->vb.pdev->dev,
"Changing from %s to E1 line mode.\n",
dahdi_spantype2str(wc->span.spantype));
res = t1_software_init(wc, J1);
default:
dev_err(&wc->vb.pdev->dev,
"Got invalid linemode '%s' from dahdi\n",
dahdi_spantype2str(linemode));
res = -EINVAL;
}
/* Since we probably reallocated the channels we need to make
* sure they are configured before setting INITIALIZED again. */
if (!res) {
dahdi_init_span(span);
set_bit(INITIALIZED, &wc->bit_flags);
mod_timer(&wc->timer, jiffies + HZ/5);
}
return res;
}
#if 0
#ifdef VPM_SUPPORT
static inline unsigned char t1_vpm_in(struct t1 *wc, int unit, const unsigned int addr)
{
return t1_getreg_full(wc, addr, unit);
}
static inline unsigned char t1_vpm_out(struct t1 *wc, int unit, const unsigned int addr, const unsigned char val)
{
return t1_setreg(wc, addr, val, unit);
}
#endif
#endif
static int t1_hardware_post_init(struct t1 *wc, enum linemode *type)
{
int res;
int reg;
int x;
/* T1 or E1 */
if ((-1 != t1e1override) || (-1 != j1mode)) {
*type = (t1e1override) ? E1 : (j1mode) ? J1 : T1;
} else {
if (!strcasecmp(default_linemode, "e1")) {
*type = E1;
} else if (!strcasecmp(default_linemode, "t1")) {
*type = T1;
} else if (!strcasecmp(default_linemode, "j1")) {
*type = J1;
} else {
u8 pins;
res = t1_getpins(wc, &pins);
if (res)
return res;
*type = (pins & 0x01) ? T1 : E1;
}
}
debug_printk(wc, 1, "linemode: %s\n", (*type == T1) ? "T1" :
(J1 == *type) ? "J1" : "E1");
/* what version of the FALC are we using? */
reg = t1_setreg(wc, 0x4a, 0xaa);
reg = t1_getreg(wc, 0x4a);
if (reg < 0) {
t1_info(wc, "Failed to read FALC version (%d)\n", reg);
return -EIO;
}
debug_printk(wc, 1, "FALC version: %08x\n", reg);
/* make sure reads and writes work */
for (x = 0; x < 256; x++) {
t1_setreg(wc, 0x14, x);
reg = t1_getreg(wc, 0x14);
if (reg < 0) {
t1_info(wc, "Failed register read (%d)\n", reg);
return -EIO;
}
if (reg != x) {
t1_info(wc, "Register test failed. "
"Wrote '%x' but read '%x'\n", x, reg);
return -EIO;
}
}
t1_setleds(wc, wc->ledstate);
return 0;
}
static void t1_check_alarms(struct t1 *wc)
{
unsigned char c,d;
int alarms;
int x,j;
unsigned char fmr4; /* must read this always */
struct command *cmds[3];
if (!(test_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags)))
return;
for (x = 0; x < ARRAY_SIZE(cmds); ++x) {
cmds[x] = get_free_cmd(wc);
if (!cmds[x]) {
WARN_ON(1);
for (x = 0; x < ARRAY_SIZE(cmds); ++x)
free_cmd(wc, cmds[x]);
return;
}
}
/* Since this is voicebus, if we issue all the reads initially and then
* check the results we can save ourselves some time. Otherwise, each
* read will take a minimum of 3ms to go through the complete pipeline.
*/
__t1_getreg(wc, 0x4c, cmds[0]);
__t1_getreg(wc, 0x20, cmds[1]); /* must read this even if not used */
__t1_getreg(wc, 0x4d, cmds[2]);
d = __t1_getresult(wc, cmds[2]);
fmr4 = __t1_getresult(wc, cmds[1]);
c = __t1_getresult(wc, cmds[0]);
for (x=0; x < ARRAY_SIZE(cmds); ++x)
free_cmd(wc, cmds[x]);
/* Assume no alarms */
alarms = 0;
/* And consider only carrier alarms */
wc->span.alarms &= (DAHDI_ALARM_RED | DAHDI_ALARM_BLUE | DAHDI_ALARM_NOTOPEN);
if (dahdi_is_e1_span(&wc->span)) {
if (c & 0x04) {
/* No multiframe found, force RAI high after 400ms only if
we haven't found a multiframe since last loss
of frame */
if (!wc->flags.nmf) {
t1_setreg(wc, 0x20, 0x9f | 0x20); /* LIM0: Force RAI High */
wc->flags.nmf = 1;
t1_info(wc, "NMF workaround on!\n");
}
t1_setreg(wc, 0x1e, 0xc3); /* Reset to CRC4 mode */
t1_setreg(wc, 0x1c, 0xf2); /* Force Resync */
t1_setreg(wc, 0x1c, 0xf0); /* Force Resync */
} else if (!(c & 0x02)) {
if (wc->flags.nmf) {
t1_setreg(wc, 0x20, 0x9f); /* LIM0: Clear forced RAI */
wc->flags.nmf = 0;
t1_info(wc, "NMF workaround off!\n");
}
}
} else {
/* Detect loopup code if we're not sending one */
if ((!wc->span.mainttimer) && (d & 0x08)) {
/* Loop-up code detected */
if ((++wc->loopupcnt > 80) &&
(wc->span.maintstat != DAHDI_MAINT_REMOTELOOP)) {
t1_notice(wc, "Loopup detected,"\
" enabling remote loop\n");
t1_setreg(wc, 0x36, 0x08); /* LIM0: Disable any local loop */
t1_setreg(wc, 0x37, 0xf6); /* LIM1: Enable remote loop */
wc->span.maintstat = DAHDI_MAINT_REMOTELOOP;
}
} else {
wc->loopupcnt = 0;
}
/* Same for loopdown code */
if ((!wc->span.mainttimer) && (d & 0x10)) {
/* Loop-down code detected */
if ((++wc->loopdowncnt > 80) &&
(wc->span.maintstat == DAHDI_MAINT_REMOTELOOP)) {
t1_notice(wc, "Loopdown detected,"\
" disabling remote loop\n");
t1_setreg(wc, 0x36, 0x08); /* LIM0: Disable any local loop */
t1_setreg(wc, 0x37, 0xf0); /* LIM1: Disable remote loop */
wc->span.maintstat = DAHDI_MAINT_NONE;
}
} else {
wc->loopdowncnt = 0;
}
}
if (wc->span.lineconfig & DAHDI_CONFIG_NOTOPEN) {
for (x=0,j=0;x < wc->span.channels;x++)
if ((wc->span.chans[x]->flags & DAHDI_FLAG_OPEN) ||
dahdi_have_netdev(wc->span.chans[x]))
j++;
if (!j)
alarms |= DAHDI_ALARM_NOTOPEN;
}
if (c & 0x20) { /* LOF/LFA */
if (wc->alarmcount >= (alarmdebounce/100))
alarms |= DAHDI_ALARM_RED;
else {
if (unlikely(debug && !wc->alarmcount)) {
/* starting to debounce LOF/LFA */
t1_info(wc, "LOF/LFA detected but "
"debouncing for %d ms\n",
alarmdebounce);
}
wc->alarmcount++;
}
} else
wc->alarmcount = 0;
if (c & 0x80) { /* LOS */
if (wc->losalarmcount >= (losalarmdebounce/100))
alarms |= DAHDI_ALARM_RED;
else {
if (unlikely(debug && !wc->losalarmcount)) {
/* starting to debounce LOS */
t1_info(wc, "LOS detected but debouncing "
"for %d ms\n", losalarmdebounce);
}
wc->losalarmcount++;
}
} else
wc->losalarmcount = 0;
if (c & 0x40) { /* AIS */
if (wc->aisalarmcount >= (aisalarmdebounce/100))
alarms |= DAHDI_ALARM_BLUE;
else {
if (unlikely(debug && !wc->aisalarmcount)) {
/* starting to debounce AIS */
t1_info(wc, "AIS detected but debouncing "
"for %d ms\n", aisalarmdebounce);
}
wc->aisalarmcount++;
}
} else
wc->aisalarmcount = 0;
/* Keep track of recovering */
if ((!alarms) && wc->span.alarms)
wc->alarmtimer = jiffies + 5*HZ;
if (wc->alarmtimer)
alarms |= DAHDI_ALARM_RECOVER;
/* If receiving alarms, go into Yellow alarm state */
if (alarms && !wc->flags.sendingyellow) {
t1_info(wc, "Setting yellow alarm\n");
/* We manually do yellow alarm to handle RECOVER and NOTOPEN, otherwise it's auto anyway */
t1_setreg(wc, 0x20, fmr4 | 0x20);
wc->flags.sendingyellow = 1;
} else if (!alarms && wc->flags.sendingyellow) {
t1_info(wc, "Clearing yellow alarm\n");
/* We manually do yellow alarm to handle RECOVER */
t1_setreg(wc, 0x20, fmr4 & ~0x20);
wc->flags.sendingyellow = 0;
}
/*
if ((c & 0x10))
alarms |= DAHDI_ALARM_YELLOW;
*/
if (c & 0x10) { /* receiving yellow (RAI) */
if (wc->yelalarmcount >= (yelalarmdebounce/100))
alarms |= DAHDI_ALARM_YELLOW;
else {
if (unlikely(debug && !wc->yelalarmcount)) {
/* starting to debounce AIS */
t1_info(wc, "yelllow (RAI) detected but "
"debouncing for %d ms\n",
yelalarmdebounce);
}
wc->yelalarmcount++;
}
} else
wc->yelalarmcount = 0;
if (wc->span.mainttimer || wc->span.maintstat)
alarms |= DAHDI_ALARM_LOOPBACK;
wc->span.alarms = alarms;
dahdi_alarm_notify(&wc->span);
}
static void handle_leds(struct t1 *wc)
{
unsigned char led;
unsigned long flags;
led = wc->ledstate;
if ((wc->span.alarms & (DAHDI_ALARM_RED | DAHDI_ALARM_BLUE))
|| wc->losalarmcount) {
/* When we're in red alarm, blink the led once a second. */
if (time_after(jiffies, wc->blinktimer)) {
led = (led & __LED_GREEN) ? SET_LED_RED(led) : UNSET_LED_REDGREEN(led);
}
} else if (wc->span.alarms & DAHDI_ALARM_YELLOW) {
led = (led & __LED_RED) ? SET_LED_GREEN(led) : SET_LED_RED(led);
} else {
if (wc->span.maintstat != DAHDI_MAINT_NONE)
led = SET_LED_ORANGE(led);
else
led = UNSET_LED_ORANGE(led);
if (test_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags))
led = SET_LED_GREEN(led);
else
led = UNSET_LED_REDGREEN(led);
}
if (led != wc->ledstate) {
struct command *cmd;
cmd = get_free_cmd(wc);
if (cmd) {
wc->blinktimer = jiffies + HZ/2;
cmd->flags |= __CMD_LEDS;
cmd->address = ~led & 0x0E;
submit_cmd(wc, cmd);
spin_lock_irqsave(&wc->reglock, flags);
wc->ledstate = led;
spin_unlock_irqrestore(&wc->reglock, flags);
}
}
}
static void t1_do_counters(struct t1 *wc)
{
if (wc->alarmtimer && time_after(jiffies, wc->alarmtimer)) {
wc->span.alarms &= ~(DAHDI_ALARM_RECOVER);
wc->alarmtimer = 0;
dahdi_alarm_notify(&wc->span);
}
}
static void insert_tdm_data(const struct t1 *wc, u8 *sframe)
{
int i;
register u8 *chanchunk;
const int channels = wc->span.channels;
for (i = 0; i < channels; ++i) {
chanchunk = &wc->chans[i]->writechunk[0];
sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0];
sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1];
sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2];
sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3];
sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4];
sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5];
sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6];
sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7];
}
}
static inline void t1_transmitprep(struct t1 *wc, u8 *sframe)
{
int x;
int y;
u8 *eframe = sframe;
/* Calculate Transmission */
if (likely(test_bit(INITIALIZED, &wc->bit_flags)))
_dahdi_transmit(&wc->span);
#ifdef CONFIG_VOICEBUS_ECREFERENCE
for (chan = 0; chan < wc->span.channels; chan++) {
__dahdi_fifo_put(wc->ec_reference[chan],
wc->chans[chan]->writechunk, DAHDI_CHUNKSIZE);
}
#endif
if (likely(test_bit(INITIALIZED, &wc->bit_flags)))
insert_tdm_data(wc, sframe);
spin_lock(&wc->reglock);
for (x = 0; x < DAHDI_CHUNKSIZE; x++) {
/* process the command queue */
for (y = 0; y < 7; y++)
cmd_dequeue(wc, eframe, x, y);
#ifdef VPM_SUPPORT
if (wc->vpmadt032) {
cmd_dequeue_vpmadt032(wc, eframe);
} else if (wc->vpmoct) {
cmd_dequeue_vpmoct(wc, eframe);
}
#endif
if (x < DAHDI_CHUNKSIZE - 1) {
eframe[EFRAME_SIZE] = wc->ctlreg;
eframe[EFRAME_SIZE + 1] = wc->txident++;
}
eframe += (EFRAME_SIZE + EFRAME_GAP);
}
spin_unlock(&wc->reglock);
}
/**
* is_good_frame() - Whether the SFRAME received was one sent.
*
*/
static inline bool is_good_frame(const u8 *sframe)
{
const u8 a = sframe[0*(EFRAME_SIZE+EFRAME_GAP) + (EFRAME_SIZE+1)];
const u8 b = sframe[1*(EFRAME_SIZE+EFRAME_GAP) + (EFRAME_SIZE+1)];
return a != b;
}
/**
* extract_tdm_data() - Move TDM data from sframe to channels.
*
*/
static void extract_tdm_data(struct t1 *wc, const u8 *const sframe)
{
int i;
register u8 *chanchunk;
const int channels = wc->span.channels;
for (i = 0; i < channels; ++i) {
chanchunk = &wc->chans[i]->readchunk[0];
chanchunk[0] = sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*0];
chanchunk[1] = sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*1];
chanchunk[2] = sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*2];
chanchunk[3] = sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*3];
chanchunk[4] = sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*4];
chanchunk[5] = sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*5];
chanchunk[6] = sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*6];
chanchunk[7] = sframe[(i+1)*2 + (EFRAME_SIZE + EFRAME_GAP)*7];
}
/* Pre-echo with the vpmoct overwrites the 24th timeslot with the
* specified channel's pre-echo audio stream. This timeslot is unused
* by the te12xp */
if (wc->vpmoct && wc->vpmoct->preecho_enabled) {
chanchunk = &wc->vpmoct->preecho_buf[0];
chanchunk[0] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*0];
chanchunk[1] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*1];
chanchunk[2] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*2];
chanchunk[3] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*3];
chanchunk[4] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*4];
chanchunk[5] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*5];
chanchunk[6] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*6];
chanchunk[7] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*7];
}
}
static inline void t1_receiveprep(struct t1 *wc, const u8* sframe)
{
int x;
unsigned char expected;
const u8 *eframe = sframe;
if (!is_good_frame(sframe))
return;
if (likely(test_bit(INITIALIZED, &wc->bit_flags)))
extract_tdm_data(wc, sframe);
spin_lock(&wc->reglock);
for (x = 0; x < DAHDI_CHUNKSIZE; x++) {
if (x < DAHDI_CHUNKSIZE - 1) {
expected = wc->rxident+1;
wc->rxident = eframe[EFRAME_SIZE + 1];
wc->statreg = eframe[EFRAME_SIZE + 2];
if (wc->rxident != expected) {
wc->ddev->irqmisses++;
_resend_cmds(wc);
if (unlikely(debug)) {
t1_info(wc, "oops: rxident=%d "
"expected=%d x=%d\n",
wc->rxident, expected, x);
}
}
}
cmd_decipher(wc, eframe);
#ifdef VPM_SUPPORT
if (wc->vpmadt032)
cmd_decipher_vpmadt032(wc, eframe);
else if (wc->vpmoct)
cmd_decipher_vpmoct(wc, eframe);
#endif
eframe += (EFRAME_SIZE + EFRAME_GAP);
}
spin_unlock(&wc->reglock);
/* echo cancel */
if (likely(test_bit(INITIALIZED, &wc->bit_flags))) {
for (x = 0; x < wc->span.channels; x++) {
struct dahdi_chan *const c = wc->chans[x];
#ifdef CONFIG_VOICEBUS_ECREFERENCE
unsigned char buffer[DAHDI_CHUNKSIZE];
__dahdi_fifo_get(wc->ec_reference[x], buffer,
ARRAY_SIZE(buffer));
_dahdi_ec_chunk(c, c->readchunk,
buffer);
#else
if ((wc->vpmoct) &&
(c->chanpos-1 == wc->vpmoct->preecho_timeslot) &&
(wc->vpmoct->preecho_enabled)) {
__dahdi_ec_chunk(c, c->readchunk,
wc->vpmoct->preecho_buf,
c->writechunk);
} else {
_dahdi_ec_chunk(c, c->readchunk,
wc->ec_chunk2[x]);
memcpy(wc->ec_chunk2[x], wc->ec_chunk1[x],
DAHDI_CHUNKSIZE);
memcpy(wc->ec_chunk1[x], c->writechunk,
DAHDI_CHUNKSIZE);
}
}
#endif
_dahdi_receive(&wc->span);
}
}
static void t1_handle_transmit(struct voicebus *vb, struct list_head *buffers)
{
struct t1 *wc = container_of(vb, struct t1, vb);
struct vbb *vbb;
list_for_each_entry(vbb, buffers, entry) {
memset(vbb->data, 0, sizeof(vbb->data));
atomic_inc(&wc->txints);
t1_transmitprep(wc, vbb->data);
handle_leds(wc);
}
}
static void t1_handle_receive(struct voicebus *vb, struct list_head *buffers)
{
struct t1 *wc = container_of(vb, struct t1, vb);
struct vbb *vbb;
list_for_each_entry(vbb, buffers, entry)
t1_receiveprep(wc, vbb->data);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void timer_work_func(void *param)
{
struct t1 *wc = param;
#else
static void timer_work_func(struct work_struct *work)
{
struct t1 *wc = container_of(work, struct t1, timer_work);
#endif
if (test_bit(INITIALIZED, &wc->bit_flags))
mod_timer(&wc->timer, jiffies + HZ/30);
t1_do_counters(wc);
t1_check_alarms(wc);
t1_check_sigbits(wc);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void vpm_check_func(void *data)
{
struct t1 *wc = data;
#else
static void vpm_check_func(struct work_struct *work)
{
struct t1 *wc = container_of(work, struct t1, vpm_check_work);
#endif
int res;
u16 version;
const int MAX_CHECKS = 5;
/* If there is a failed VPM module, do not block dahdi_cfg
* indefinitely. */
if (++wc->vpm_check_count > MAX_CHECKS) {
wc->not_ready--;
wc->vpm_check = MAX_JIFFY_OFFSET;
t1_info(wc, "Disabling VPMADT032 Checking.\n");
return;
}
if (!test_bit(INITIALIZED, &wc->bit_flags))
return;
if (test_bit(VPM150M_ACTIVE, &wc->ctlreg)) {
res = gpakPingDsp(wc->vpmadt032->dspid, &version);
if (!res) {
set_bit(VPM150M_ACTIVE, &wc->ctlreg);
wc->vpm_check = jiffies + HZ*5;
wc->vpm_check_count = 0;
return;
}
clear_bit(VPM150M_ACTIVE, &wc->ctlreg);
t1_info(wc, "VPMADT032 is non-responsive. Resetting.\n");
}
if (!test_bit(INITIALIZED, &wc->bit_flags))
return;
res = vpmadt032_reset(wc->vpmadt032);
if (res) {
t1_info(wc, "Failed VPMADT032 reset. VPMADT032 is disabled.\n");
wc->vpm_check = jiffies + HZ*5;
return;
}
if (!test_bit(INITIALIZED, &wc->bit_flags))
return;
res = config_vpmadt032(wc->vpmadt032, wc);
if (res) {
/* We failed the configuration, let's try again. */
t1_info(wc, "Failed to configure the ports. Retrying.\n");
if (!test_bit(INITIALIZED, &wc->bit_flags))
return;
queue_work(wc->vpmadt032->wq, &wc->vpm_check_work);
return;
}
if (!test_bit(INITIALIZED, &wc->bit_flags))
return;
/* Looks like the reset went ok so we can put the VPM module back in
* the TDM path. */
set_bit(VPM150M_ACTIVE, &wc->ctlreg);
t1_info(wc, "VPMADT032 is reenabled.\n");
wc->vpm_check = jiffies + HZ*5;
wc->not_ready--;
return;
}
static void te12xp_timer(unsigned long data)
{
unsigned long flags;
struct t1 *wc = (struct t1 *)data;
if (unlikely(!test_bit(INITIALIZED, &wc->bit_flags)))
return;
queue_work(wc->wq, &wc->timer_work);
spin_lock_irqsave(&wc->reglock, flags);
if (!wc->vpmadt032)
goto unlock_exit;
if (time_after(wc->vpm_check, jiffies))
goto unlock_exit;
queue_work(wc->vpmadt032->wq, &wc->vpm_check_work);
unlock_exit:
spin_unlock_irqrestore(&wc->reglock, flags);
return;
}
static void t1_handle_error(struct voicebus *vb)
{
unsigned long flags;
struct t1 *wc = container_of(vb, struct t1, vb);
spin_lock_irqsave(&wc->reglock, flags);
if (!wc->vpmadt032)
goto unlock_exit;
clear_bit(VPM150M_ACTIVE, &wc->ctlreg);
queue_work(wc->vpmadt032->wq, &wc->vpm_check_work);
unlock_exit:
spin_unlock_irqrestore(&wc->reglock, flags);
}
static const struct voicebus_operations voicebus_operations = {
.handle_receive = t1_handle_receive,
.handle_transmit = t1_handle_transmit,
.handle_error = t1_handle_error,
};
#ifdef CONFIG_VOICEBUS_SYSFS
static ssize_t voicebus_current_latency_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long flags;
struct t1 *wc = dev_get_drvdata(dev);
unsigned int current_latency;
spin_lock_irqsave(&wc->vb.lock, flags);
current_latency = wc->vb.min_tx_buffer_count;
spin_unlock_irqrestore(&wc->vb.lock, flags);
return sprintf(buf, "%d\n", current_latency);
}
static DEVICE_ATTR(voicebus_current_latency, 0400,
voicebus_current_latency_show, NULL);
static ssize_t vpm_firmware_version_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int res;
u16 version = 0;
struct t1 *wc = dev_get_drvdata(dev);
if (wc->vpmadt032) {
res = gpakPingDsp(wc->vpmadt032->dspid, &version);
if (res) {
t1_info(wc, "Failed gpakPingDsp %d\n", res);
version = -1;
}
}
return sprintf(buf, "%x.%02x\n", (version & 0xff00) >> 8, (version & 0xff));
}
static DEVICE_ATTR(vpm_firmware_version, 0400,
vpm_firmware_version_show, NULL);
static void create_sysfs_files(struct t1 *wc)
{
int ret;
ret = device_create_file(&wc->vb.pdev->dev,
&dev_attr_voicebus_current_latency);
if (ret) {
dev_info(&wc->vb.pdev->dev,
"Failed to create device attributes.\n");
}
ret = device_create_file(&wc->vb.pdev->dev,
&dev_attr_vpm_firmware_version);
if (ret) {
dev_info(&wc->vb.pdev->dev,
"Failed to create device attributes.\n");
}
}
static void remove_sysfs_files(struct t1 *wc)
{
device_remove_file(&wc->vb.pdev->dev,
&dev_attr_vpm_firmware_version);
device_remove_file(&wc->vb.pdev->dev,
&dev_attr_voicebus_current_latency);
}
#else
static inline void create_sysfs_files(struct t1 *wc) { return; }
static inline void remove_sysfs_files(struct t1 *wc) { return; }
#endif /* CONFIG_VOICEBUS_SYSFS */
static const struct dahdi_span_ops t1_span_ops = {
.owner = THIS_MODULE,
.spanconfig = t1xxp_spanconfig,
.chanconfig = t1xxp_chanconfig,
.startup = t1xxp_startup,
.rbsbits = t1xxp_rbsbits,
.maint = t1xxp_maint,
.ioctl = t1xxp_ioctl,
.set_spantype = t1xxp_set_linemode,
#ifdef VPM_SUPPORT
.enable_hw_preechocan = t1xxp_enable_hw_preechocan,
.disable_hw_preechocan = t1xxp_disable_hw_preechocan,
.echocan_create = t1xxp_echocan_create,
.echocan_name = t1xxp_echocan_name,
#endif
};
static int __devinit te12xp_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct t1 *wc;
const struct t1_desc *d = (struct t1_desc *) ent->driver_data;
unsigned int x;
int res;
unsigned int index = -1;
enum linemode type;
for (x = 0; x < ARRAY_SIZE(ifaces); x++) {
if (!ifaces[x]) {
index = x;
break;
}
}
if (-1 == index) {
printk(KERN_INFO "%s: Too many interfaces\n",
THIS_MODULE->name);
return -EIO;
}
wc = kzalloc(sizeof(*wc), GFP_KERNEL);
if (!wc)
return -ENOMEM;
/* Set the performance counters to -1 since this card currently does
* not support collecting them. */
memset(&wc->span.count, -1, sizeof(wc->span.count));
ifaces[index] = wc;
sprintf(wc->span.name, "WCT1/%d", index);
snprintf(wc->span.desc, sizeof(wc->span.desc) - 1, "%s Card %d",
d->name, index);
wc->not_ready = 1;
wc->ledstate = -1;
wc->variety = d->name;
wc->txident = 1;
spin_lock_init(&wc->reglock);
INIT_LIST_HEAD(&wc->active_cmds);
INIT_LIST_HEAD(&wc->pending_cmds);
setup_timer(&wc->timer, te12xp_timer, (unsigned long)wc);
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&wc->timer_work, timer_work_func, wc);
# else
INIT_WORK(&wc->timer_work, timer_work_func);
# endif
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&wc->vpm_check_work, vpm_check_func, wc);
# else
INIT_WORK(&wc->vpm_check_work, vpm_check_func);
# endif
wc->ddev = dahdi_create_device();
if (!wc->ddev) {
ifaces[index] = NULL;
kfree(wc);
return -ENOMEM;
}
wc->ddev->manufacturer = "Digium";
wc->ddev->location = kasprintf(GFP_KERNEL, "PCI Bus %02d Slot %02d",
pdev->bus->number,
PCI_SLOT(pdev->devfn) + 1);
if (!wc->ddev->location) {
ifaces[index] = NULL;
kfree(wc);
return -ENOMEM;
}
#ifdef CONFIG_VOICEBUS_ECREFERENCE
for (x = 0; x < ARRAY_SIZE(wc->ec_reference); ++x) {
/* 256 is used here since it is the largest power of two that
* will contain 8 * VOICBUS_DEFAULT_LATENCY */
wc->ec_reference[x] = dahdi_fifo_alloc(256, GFP_KERNEL);
if (IS_ERR(wc->ec_reference[x])) {
res = PTR_ERR(wc->ec_reference[x]);
wc->ec_reference[x] = NULL;
free_wc(wc);
return res;
}
}
#endif /* CONFIG_VOICEBUS_ECREFERENCE */
#ifdef CONFIG_VOICEBUS_DISABLE_ASPM
if (is_pcie(wc)) {
pci_disable_link_state(pdev->bus->self, PCIE_LINK_STATE_L0S |
PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
};
#endif
snprintf(wc->name, sizeof(wc->name)-1, "wcte12xp%d", index);
pci_set_drvdata(pdev, wc);
wc->vb.ops = &voicebus_operations;
wc->vb.pdev = pdev;
wc->vb.debug = &debug;
res = voicebus_init(&wc->vb, wc->name);
if (res) {
free_wc(wc);
ifaces[index] = NULL;
return res;
}
wc->wq = create_singlethread_workqueue(wc->name);
if (!wc->wq) {
kfree(wc);
ifaces[index] = NULL;
return -ENOMEM;
}
voicebus_set_minlatency(&wc->vb, latency);
voicebus_set_maxlatency(&wc->vb, max_latency);
max_latency = wc->vb.max_latency;
create_sysfs_files(wc);
voicebus_lock_latency(&wc->vb);
if (voicebus_start(&wc->vb)) {
voicebus_release(&wc->vb);
free_wc(wc);
ifaces[index] = NULL;
return -EIO;
}
res = t1_hardware_post_init(wc, &type);
if (res) {
voicebus_release(&wc->vb);
free_wc(wc);
ifaces[index] = NULL;
return res;
}
wc->span.chans = wc->chans;
res = t1_software_init(wc, type);
if (res) {
voicebus_release(&wc->vb);
free_wc(wc);
ifaces[index] = NULL;
return res;
}
wc->span.ops = &t1_span_ops;
list_add_tail(&wc->span.device_node, &wc->ddev->spans);
res = dahdi_register_device(wc->ddev, &wc->vb.pdev->dev);
if (res) {
t1_info(wc, "Unable to register with DAHDI\n");
return res;
}
set_bit(INITIALIZED, &wc->bit_flags);
mod_timer(&wc->timer, jiffies + HZ/5);
t1_info(wc, "Found a %s\n", wc->variety);
voicebus_unlock_latency(&wc->vb);
wc->not_ready--;
return 0;
}
static void __devexit te12xp_remove_one(struct pci_dev *pdev)
{
struct t1 *wc = pci_get_drvdata(pdev);
#ifdef VPM_SUPPORT
unsigned long flags;
struct vpmadt032 *vpmadt = wc->vpmadt032;
struct vpmoct *vpmoct = wc->vpmoct;
#endif
if (!wc)
return;
dahdi_unregister_device(wc->ddev);
remove_sysfs_files(wc);
clear_bit(INITIALIZED, &wc->bit_flags);
smp_mb__after_atomic();
del_timer_sync(&wc->timer);
flush_workqueue(wc->wq);
#ifdef VPM_SUPPORT
if (vpmadt) {
clear_bit(VPM150M_ACTIVE, &vpmadt->control);
flush_workqueue(vpmadt->wq);
} else if (vpmoct) {
while (t1_wait_for_ready(wc))
schedule();
}
#endif
del_timer_sync(&wc->timer);
voicebus_release(&wc->vb);
#ifdef VPM_SUPPORT
if (vpmadt) {
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmadt032 = NULL;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmadt032_free(vpmadt);
} else if (vpmoct) {
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmoct = NULL;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmoct_free(vpmoct);
}
#endif
t1_info(wc, "Freed a Wildcard TE12xP.\n");
free_wc(wc);
}
static DEFINE_PCI_DEVICE_TABLE(te12xp_pci_tbl) = {
{ 0xd161, 0x0120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &te120p},
{ 0xd161, 0x8000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &te121},
{ 0xd161, 0x8001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &te122},
{ 0 }
};
static void te12xp_shutdown(struct pci_dev *pdev)
{
struct t1 *wc = pci_get_drvdata(pdev);
voicebus_quiesce(&wc->vb);
}
static int te12xp_suspend(struct pci_dev *pdev, pm_message_t state)
{
return -ENOSYS;
}
MODULE_DEVICE_TABLE(pci, te12xp_pci_tbl);
static struct pci_driver te12xp_driver = {
.name = "wcte12xp",
.probe = te12xp_init_one,
.remove = __devexit_p(te12xp_remove_one),
.shutdown = te12xp_shutdown,
.suspend = te12xp_suspend,
.id_table = te12xp_pci_tbl,
};
static int __init te12xp_init(void)
{
int res;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 23)
cmd_cache = kmem_cache_create(THIS_MODULE->name, sizeof(struct command), 0,
#if defined(CONFIG_SLUB) && (LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 22))
SLAB_HWCACHE_ALIGN | SLAB_STORE_USER, NULL, NULL);
#else
SLAB_HWCACHE_ALIGN, NULL, NULL);
#endif
#else
cmd_cache = kmem_cache_create(THIS_MODULE->name, sizeof(struct command), 0,
SLAB_HWCACHE_ALIGN, NULL);
#endif
if (!cmd_cache)
return -ENOMEM;
if ((-1 != t1e1override) || (-1 != j1mode)) {
pr_info("'t1e1override' and 'j1mode' are deprecated. "
"Please use 'default_linemode' instead.\n");
/* If someone is setting j1mode, then, t1e1override most likely
* needs to be forced to t1 mode */
if (j1mode > 0)
t1e1override = 0;
} else if (strcasecmp(default_linemode, "auto") &&
strcasecmp(default_linemode, "t1") &&
strcasecmp(default_linemode, "j1") &&
strcasecmp(default_linemode, "e1")) {
pr_err("'%s' is an unknown span type.\n", default_linemode);
default_linemode = "auto";
kmem_cache_destroy(cmd_cache);
return -EINVAL;
}
res = dahdi_pci_module(&te12xp_driver);
if (res) {
kmem_cache_destroy(cmd_cache);
return -ENODEV;
}
return 0;
}
static void __exit te12xp_cleanup(void)
{
pci_unregister_driver(&te12xp_driver);
kmem_cache_destroy(cmd_cache);
}
module_param(debug, int, S_IRUGO | S_IWUSR);
module_param(t1e1override, int, S_IRUGO | S_IWUSR);
module_param(default_linemode, charp, S_IRUGO);
MODULE_PARM_DESC(default_linemode, "\"auto\"(default), \"e1\", or \"t1\". "
"\"auto\" will use the value from the hardware jumpers.");
module_param(j1mode, int, S_IRUGO | S_IWUSR);
module_param(alarmdebounce, int, S_IRUGO | S_IWUSR);
module_param(losalarmdebounce, int, S_IRUGO | S_IWUSR);
module_param(aisalarmdebounce, int, S_IRUGO | S_IWUSR);
module_param(yelalarmdebounce, int, S_IRUGO | S_IWUSR);
module_param(latency, int, S_IRUGO);
module_param(max_latency, int, S_IRUGO);
#ifdef VPM_SUPPORT
module_param(vpmsupport, int, S_IRUGO);
module_param(vpmtsisupport, int, S_IRUGO);
module_param(vpmnlptype, int, S_IRUGO);
module_param(vpmnlpthresh, int, S_IRUGO);
module_param(vpmnlpmaxsupp, int, S_IRUGO);
#endif
MODULE_DESCRIPTION("Wildcard VoiceBus Digital Card Driver");
MODULE_AUTHOR("Digium Incorporated <support@digium.com>");
MODULE_LICENSE("GPL v2");
module_init(te12xp_init);
module_exit(te12xp_cleanup);