/* * Wildcard TDM2400P TDM FXS/FXO Interface Driver for DAHDI Telephony interface * * Written by Mark Spencer * Support for TDM800P and VPM150M by Matthew Fredrickson * * Support for Hx8 by Andrew Kohlsmith and Matthew * Fredrickson * * Copyright (C) 2005 - 2010 Digium, Inc. * All rights reserved. * * Sections for QRV cards written by Jim Dixon * Copyright (C) 2006, Jim Dixon and QRV Communications * All rights reserved. * */ /* * See http://www.asterisk.org for more information about * the Asterisk project. Please do not directly contact * any of the maintainers of this project for assistance; * the project provides a web site, mailing lists and IRC * channels for your use. * * This program is free software, distributed under the terms of * the GNU General Public License Version 2 as published by the * Free Software Foundation. See the LICENSE file included with * this program for more details. */ /* For QRV DRI cards, gain is signed short, expressed in hundredths of db (in reference to 1v Peak @ 1000Hz) , as follows: Rx Gain: -11.99 to 15.52 db Tx Gain - No Pre-Emphasis: -35.99 to 12.00 db Tx Gain - W/Pre-Emphasis: -23.99 to 0.00 db */ #include #include #include #include #include #include #include #include #include #include #include #include #include #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26) #include #else #include #endif #include #include #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 30) /* Define this if you would like to load the modules in parallel. While this * can speed up loads when multiple cards handled by this driver are installed, * it also makes it impossible to abort module loads with ctrl-c */ #undef USE_ASYNC_INIT #include #else #undef USE_ASYNC_INIT #endif #include #include #include "proslic.h" #include "wctdm24xxp.h" #include "xhfc.h" #include "adt_lec.h" #include "voicebus/GpakCust.h" #include "voicebus/GpakApi.h" #if VOICEBUS_SFRAME_SIZE != SFRAME_SIZE #error SFRAME_SIZE must match the VOICEBUS_SFRAME_SIZE #endif /* Experimental max loop current limit for the proslic Loop current limit is from 20 mA to 41 mA in steps of 3 (according to datasheet) So set the value below to: 0x00 : 20mA (default) 0x01 : 23mA 0x02 : 26mA 0x03 : 29mA 0x04 : 32mA 0x05 : 35mA 0x06 : 37mA 0x07 : 41mA */ static int loopcurrent = 20; /* Following define is a logical exclusive OR to determine if the polarity of an fxs line is to be reversed. * The items taken into account are: * overall polarity reversal for the module, * polarity reversal for the port, * and the state of the line reversal MWI indicator */ #define POLARITY_XOR(card) ( (reversepolarity != 0) ^ (wc->mods[(card)].fxs.reversepolarity != 0) ^ (wc->mods[(card)].fxs.vmwi_linereverse != 0) ) static int reversepolarity = 0; static alpha indirect_regs[] = { {0,255,"DTMF_ROW_0_PEAK",0x55C2}, {1,255,"DTMF_ROW_1_PEAK",0x51E6}, {2,255,"DTMF_ROW2_PEAK",0x4B85}, {3,255,"DTMF_ROW3_PEAK",0x4937}, {4,255,"DTMF_COL1_PEAK",0x3333}, {5,255,"DTMF_FWD_TWIST",0x0202}, {6,255,"DTMF_RVS_TWIST",0x0202}, {7,255,"DTMF_ROW_RATIO_TRES",0x0198}, {8,255,"DTMF_COL_RATIO_TRES",0x0198}, {9,255,"DTMF_ROW_2ND_ARM",0x0611}, {10,255,"DTMF_COL_2ND_ARM",0x0202}, {11,255,"DTMF_PWR_MIN_TRES",0x00E5}, {12,255,"DTMF_OT_LIM_TRES",0x0A1C}, {13,0,"OSC1_COEF",0x7B30}, {14,1,"OSC1X",0x0063}, {15,2,"OSC1Y",0x0000}, {16,3,"OSC2_COEF",0x7870}, {17,4,"OSC2X",0x007D}, {18,5,"OSC2Y",0x0000}, {19,6,"RING_V_OFF",0x0000}, {20,7,"RING_OSC",0x7EF0}, {21,8,"RING_X",0x0160}, {22,9,"RING_Y",0x0000}, {23,255,"PULSE_ENVEL",0x2000}, {24,255,"PULSE_X",0x2000}, {25,255,"PULSE_Y",0x0000}, //{26,13,"RECV_DIGITAL_GAIN",0x4000}, // playback volume set lower {26,13,"RECV_DIGITAL_GAIN",0x2000}, // playback volume set lower {27,14,"XMIT_DIGITAL_GAIN",0x4000}, //{27,14,"XMIT_DIGITAL_GAIN",0x2000}, {28,15,"LOOP_CLOSE_TRES",0x1000}, {29,16,"RING_TRIP_TRES",0x3600}, {30,17,"COMMON_MIN_TRES",0x1000}, {31,18,"COMMON_MAX_TRES",0x0200}, {32,19,"PWR_ALARM_Q1Q2",0x07C0}, {33,20,"PWR_ALARM_Q3Q4", 0x4C00 /* 0x2600 */}, {34,21,"PWR_ALARM_Q5Q6",0x1B80}, {35,22,"LOOP_CLOSURE_FILTER",0x8000}, {36,23,"RING_TRIP_FILTER",0x0320}, {37,24,"TERM_LP_POLE_Q1Q2",0x008C}, {38,25,"TERM_LP_POLE_Q3Q4",0x0100}, {39,26,"TERM_LP_POLE_Q5Q6",0x0010}, {40,27,"CM_BIAS_RINGING",0x0C00}, {41,64,"DCDC_MIN_V",0x0C00}, {42,255,"DCDC_XTRA",0x1000}, {43,66,"LOOP_CLOSE_TRES_LOW",0x1000}, }; #ifdef FANCY_ECHOCAN static char ectab[] = { 0, 0, 0, 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18, 20, 22, 24, 25, 27, 28, 29, 30, 31, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32 ,32 ,32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32 ,32 ,32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32 ,32 ,32, 32, 31, 31, 30, 29, 28, 27, 25, 23, 22, 20, 18, 16, 13, 11, 9, 8, 6, 4, 3, 2, 1, 0, 0, }; static int ectrans[4] = { 0, 1, 3, 2 }; #define EC_SIZE (sizeof(ectab)) #define EC_SIZE_Q (sizeof(ectab) / 4) #endif /* Undefine to enable Power alarm / Transistor debug -- note: do not enable for normal operation! */ /* #define PAQ_DEBUG */ #define DEBUG_CARD (1 << 0) #define DEBUG_ECHOCAN (1 << 1) #include "fxo_modes.h" struct wctdm_desc { const char *name; const int flags; const int ports; }; static const struct wctdm_desc wctdm2400 = { "Wildcard TDM2400P", 0, 24 }; static const struct wctdm_desc wctdm800 = { "Wildcard TDM800P", 0, 8 }; static const struct wctdm_desc wctdm410 = { "Wildcard TDM410P", 0, 4 }; static const struct wctdm_desc wcaex2400 = { "Wildcard AEX2400", FLAG_EXPRESS, 24 }; static const struct wctdm_desc wcaex800 = { "Wildcard AEX800", FLAG_EXPRESS, 8 }; static const struct wctdm_desc wcaex410 = { "Wildcard AEX410", FLAG_EXPRESS, 4 }; static const struct wctdm_desc wcha80000 = { "HA8-0000", 0, 8 }; static const struct wctdm_desc wchb80000 = { "HB8-0000", FLAG_EXPRESS, 8 }; /** * Returns true if the card is one of the Hybrid Digital Analog Cards. */ static inline bool is_hx8(const struct wctdm *wc) { return (&wcha80000 == wc->desc) || (&wchb80000 == wc->desc); } struct wctdm *ifaces[WC_MAX_IFACES]; DEFINE_SEMAPHORE(ifacelock); static void wctdm_release(struct wctdm *wc); static int fxovoltage = 0; static unsigned int battdebounce; static unsigned int battalarm; static unsigned int battthresh; static int debug = 0; #ifdef DEBUG static int robust = 0; static int digitalloopback; #endif static int lowpower = 0; static int boostringer = 0; static int fastringer = 0; static int _opermode = 0; static char *opermode = "FCC"; static int fxshonormode = 0; static int alawoverride = 0; static char *companding = "auto"; static int fxotxgain = 0; static int fxorxgain = 0; static int fxstxgain = 0; static int fxsrxgain = 0; static int nativebridge = 0; static int ringdebounce = DEFAULT_RING_DEBOUNCE; static int fwringdetect = 0; static int latency = VOICEBUS_DEFAULT_LATENCY; static unsigned int max_latency = VOICEBUS_DEFAULT_MAXLATENCY; static int forceload; #define MS_PER_HOOKCHECK (1) #define NEONMWI_ON_DEBOUNCE (100/MS_PER_HOOKCHECK) static int neonmwi_monitor = 0; /* Note: this causes use of full wave ring detect */ static int neonmwi_level = 75; /* neon mwi trip voltage */ static int neonmwi_envelope = 10; static int neonmwi_offlimit = 16000; /* Time in milliseconds the monitor is checked before saying no message is waiting */ static int neonmwi_offlimit_cycles; /* Time in milliseconds the monitor is checked before saying no message is waiting */ static int vpmsupport = 1; static int vpmnlptype = DEFAULT_NLPTYPE; static int vpmnlpthresh = DEFAULT_NLPTHRESH; static int vpmnlpmaxsupp = DEFAULT_NLPMAXSUPP; static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec); static const struct dahdi_echocan_features vpm100m_ec_features = { .NLP_automatic = 1, .CED_tx_detect = 1, .CED_rx_detect = 1, }; static const struct dahdi_echocan_features vpm150m_ec_features = { .NLP_automatic = 1, .CED_tx_detect = 1, .CED_rx_detect = 1, }; static const struct dahdi_echocan_ops vpm100m_ec_ops = { .echocan_free = echocan_free, }; static const struct dahdi_echocan_ops vpm150m_ec_ops = { .echocan_free = echocan_free, }; static int wctdm_init_proslic(struct wctdm *wc, int card, int fast , int manual, int sane); static inline int CMD_BYTE(int card, int bit, int altcs) { /* Let's add some trickery to make the TDM410 work */ if (altcs == 3) { if (card == 2) { card = 4; altcs = 0; } else if (card == 3) { card = 5; altcs = 2; } } return (((((card) & 0x3) * 3 + (bit)) * 7) \ + ((card) >> 2) + (altcs) + ((altcs) ? -21 : 0)); } static inline int empty_slot(struct wctdm *wc, int card) { int x; for (x = 0; x < USER_COMMANDS; x++) { if (!wc->cmdq[card].cmds[x]) return x; } return -1; } static void setchanconfig_from_state(struct vpmadt032 *vpm, int channel, GpakChannelConfig_t *chanconfig) { const struct vpmadt032_options *options; GpakEcanParms_t *p; BUG_ON(!vpm); options = &vpm->options; chanconfig->PcmInPortA = 3; chanconfig->PcmInSlotA = channel; chanconfig->PcmOutPortA = SerialPortNull; chanconfig->PcmOutSlotA = channel; chanconfig->PcmInPortB = 2; chanconfig->PcmInSlotB = channel; chanconfig->PcmOutPortB = 3; chanconfig->PcmOutSlotB = channel; chanconfig->ToneTypesA = Null_tone; chanconfig->MuteToneA = Disabled; chanconfig->FaxCngDetA = Disabled; chanconfig->ToneTypesB = Null_tone; chanconfig->EcanEnableA = Enabled; chanconfig->EcanEnableB = Disabled; chanconfig->MuteToneB = Disabled; chanconfig->FaxCngDetB = Disabled; /* The software companding will be overridden on a channel by channel * basis when the channel is enabled. */ chanconfig->SoftwareCompand = cmpPCMU; chanconfig->FrameRate = rate2ms; p = &chanconfig->EcanParametersA; vpmadt032_get_default_parameters(p); p->EcanNlpType = vpm->curecstate[channel].nlp_type; p->EcanNlpThreshold = vpm->curecstate[channel].nlp_threshold; p->EcanNlpMaxSuppress = vpm->curecstate[channel].nlp_max_suppress; memcpy(&chanconfig->EcanParametersB, &chanconfig->EcanParametersA, sizeof(chanconfig->EcanParametersB)); } static int config_vpmadt032(struct vpmadt032 *vpm, struct wctdm *wc) { int res, i; GpakPortConfig_t portconfig = {0}; gpakConfigPortStatus_t configportstatus; GPAK_PortConfigStat_t pstatus; GpakChannelConfig_t chanconfig; GPAK_ChannelConfigStat_t cstatus; GPAK_AlgControlStat_t algstatus; /* First Serial Port config */ portconfig.SlotsSelect1 = SlotCfgNone; portconfig.FirstBlockNum1 = 0; portconfig.FirstSlotMask1 = 0x0000; portconfig.SecBlockNum1 = 1; portconfig.SecSlotMask1 = 0x0000; portconfig.SerialWordSize1 = SerWordSize8; portconfig.CompandingMode1 = cmpNone; portconfig.TxFrameSyncPolarity1 = FrameSyncActHigh; portconfig.RxFrameSyncPolarity1 = FrameSyncActHigh; portconfig.TxClockPolarity1 = SerClockActHigh; portconfig.RxClockPolarity1 = SerClockActHigh; portconfig.TxDataDelay1 = DataDelay0; portconfig.RxDataDelay1 = DataDelay0; portconfig.DxDelay1 = Disabled; portconfig.ThirdSlotMask1 = 0x0000; portconfig.FouthSlotMask1 = 0x0000; portconfig.FifthSlotMask1 = 0x0000; portconfig.SixthSlotMask1 = 0x0000; portconfig.SevenSlotMask1 = 0x0000; portconfig.EightSlotMask1 = 0x0000; /* Second Serial Port config */ portconfig.SlotsSelect2 = SlotCfg2Groups; portconfig.FirstBlockNum2 = 0; portconfig.FirstSlotMask2 = 0xffff; portconfig.SecBlockNum2 = 1; portconfig.SecSlotMask2 = 0xffff; portconfig.SerialWordSize2 = SerWordSize8; portconfig.CompandingMode2 = cmpNone; portconfig.TxFrameSyncPolarity2 = FrameSyncActHigh; portconfig.RxFrameSyncPolarity2 = FrameSyncActHigh; portconfig.TxClockPolarity2 = SerClockActHigh; portconfig.RxClockPolarity2 = SerClockActLow; portconfig.TxDataDelay2 = DataDelay0; portconfig.RxDataDelay2 = DataDelay0; portconfig.DxDelay2 = Disabled; portconfig.ThirdSlotMask2 = 0x0000; portconfig.FouthSlotMask2 = 0x0000; portconfig.FifthSlotMask2 = 0x0000; portconfig.SixthSlotMask2 = 0x0000; portconfig.SevenSlotMask2 = 0x0000; portconfig.EightSlotMask2 = 0x0000; /* Third Serial Port Config */ portconfig.SlotsSelect3 = SlotCfg2Groups; portconfig.FirstBlockNum3 = 0; portconfig.FirstSlotMask3 = 0xffff; portconfig.SecBlockNum3 = 1; portconfig.SecSlotMask3 = 0xffff; portconfig.SerialWordSize3 = SerWordSize8; portconfig.CompandingMode3 = cmpNone; portconfig.TxFrameSyncPolarity3 = FrameSyncActHigh; portconfig.RxFrameSyncPolarity3 = FrameSyncActHigh; portconfig.TxClockPolarity3 = SerClockActHigh; portconfig.RxClockPolarity3 = SerClockActLow; portconfig.TxDataDelay3 = DataDelay0; portconfig.RxDataDelay3 = DataDelay0; portconfig.DxDelay3 = Disabled; portconfig.ThirdSlotMask3 = 0x0000; portconfig.FouthSlotMask3 = 0x0000; portconfig.FifthSlotMask3 = 0x0000; portconfig.SixthSlotMask3 = 0x0000; portconfig.SevenSlotMask3 = 0x0000; portconfig.EightSlotMask3 = 0x0000; if ((configportstatus = gpakConfigurePorts(vpm->dspid, &portconfig, &pstatus))) { dev_notice(&wc->vb.pdev->dev, "Configuration of ports failed (%d)!\n", configportstatus); return -1; } else { if (vpm->options.debug & DEBUG_ECHOCAN) dev_info(&wc->vb.pdev->dev, "Configured McBSP ports successfully\n"); } if ((res = gpakPingDsp(vpm->dspid, &vpm->version))) { dev_notice(&wc->vb.pdev->dev, "Error pinging DSP (%d)\n", res); return -1; } for (i = 0; i < vpm->options.channels; ++i) { vpm->curecstate[i].tap_length = 0; vpm->curecstate[i].nlp_type = vpm->options.vpmnlptype; vpm->curecstate[i].nlp_threshold = vpm->options.vpmnlpthresh; vpm->curecstate[i].nlp_max_suppress = vpm->options.vpmnlpmaxsupp; vpm->curecstate[i].companding = (wc->chans[i]->chan.span->deflaw == DAHDI_LAW_ALAW) ? ADT_COMP_ALAW : ADT_COMP_ULAW; /* set_vpmadt032_chanconfig_from_state(&vpm->curecstate[i], &vpm->options, i, &chanconfig); !!! */ vpm->setchanconfig_from_state(vpm, i, &chanconfig); if ((res = gpakConfigureChannel(vpm->dspid, i, tdmToTdm, &chanconfig, &cstatus))) { dev_notice(&wc->vb.pdev->dev, "Unable to configure channel #%d (%d)", i, res); if (res == 1) { printk(KERN_CONT ", reason %d", cstatus); } printk(KERN_CONT "\n"); return -1; } if ((res = gpakAlgControl(vpm->dspid, i, BypassEcanA, &algstatus))) { dev_notice(&wc->vb.pdev->dev, "Unable to disable echo can on channel %d (reason %d:%d)\n", i + 1, res, algstatus); return -1; } if ((res = gpakAlgControl(vpm->dspid, i, BypassSwCompanding, &algstatus))) { dev_notice(&wc->vb.pdev->dev, "Unable to disable echo can on channel %d (reason %d:%d)\n", i + 1, res, algstatus); return -1; } } if ((res = gpakPingDsp(vpm->dspid, &vpm->version))) { dev_notice(&wc->vb.pdev->dev, "Error pinging DSP (%d)\n", res); return -1; } set_bit(VPM150M_ACTIVE, &vpm->control); return 0; } /** * is_good_frame() - Whether the SFRAME received was one sent. * */ static inline bool is_good_frame(const u8 *sframe) { const u8 a = sframe[0*(EFRAME_SIZE+EFRAME_GAP) + (EFRAME_SIZE+1)]; const u8 b = sframe[1*(EFRAME_SIZE+EFRAME_GAP) + (EFRAME_SIZE+1)]; return a != b; } static inline void cmd_dequeue_vpmadt032(struct wctdm *wc, u8 *writechunk) { unsigned long flags; struct vpmadt032_cmd *curcmd = NULL; struct vpmadt032 *vpmadt032 = wc->vpmadt032; int x; unsigned char leds = ~((wc->intcount / 1000) % 8) & 0x7; /* Skip audio */ writechunk += 24; if (test_bit(VPM150M_SPIRESET, &vpmadt032->control) || test_bit(VPM150M_HPIRESET, &vpmadt032->control)) { if (debug & DEBUG_ECHOCAN) dev_info(&wc->vb.pdev->dev, "HW Resetting VPMADT032...\n"); spin_lock_irqsave(&wc->reglock, flags); for (x = 24; x < 28; x++) { if (x == 24) { if (test_and_clear_bit(VPM150M_SPIRESET, &vpmadt032->control)) writechunk[CMD_BYTE(x, 0, 0)] = 0x08; else if (test_and_clear_bit(VPM150M_HPIRESET, &vpmadt032->control)) writechunk[CMD_BYTE(x, 0, 0)] = 0x0b; } else writechunk[CMD_BYTE(x, 0, 0)] = 0x00 | leds; writechunk[CMD_BYTE(x, 1, 0)] = 0; writechunk[CMD_BYTE(x, 2, 0)] = 0x00; } spin_unlock_irqrestore(&wc->reglock, flags); return; } if ((curcmd = vpmadt032_get_ready_cmd(vpmadt032))) { curcmd->txident = wc->txident; #if 0 // if (printk_ratelimit()) dev_info(&wc->vb.pdev->dev, "Transmitting txident = %d, desc = 0x%x, addr = 0x%x, data = 0x%x\n", curcmd->txident, curcmd->desc, curcmd->address, curcmd->data); #endif if (curcmd->desc & __VPM150M_RWPAGE) { /* Set CTRL access to page*/ writechunk[CMD_BYTE(24, 0, 0)] = (0x8 << 4); writechunk[CMD_BYTE(24, 1, 0)] = 0; writechunk[CMD_BYTE(24, 2, 0)] = 0x20; /* Do a page write */ if (curcmd->desc & __VPM150M_WR) writechunk[CMD_BYTE(25, 0, 0)] = ((0x8 | 0x4) << 4); else writechunk[CMD_BYTE(25, 0, 0)] = ((0x8 | 0x4 | 0x1) << 4); writechunk[CMD_BYTE(25, 1, 0)] = 0; if (curcmd->desc & __VPM150M_WR) writechunk[CMD_BYTE(25, 2, 0)] = curcmd->data & 0xf; else writechunk[CMD_BYTE(25, 2, 0)] = 0; /* Clear XADD */ writechunk[CMD_BYTE(26, 0, 0)] = (0x8 << 4); writechunk[CMD_BYTE(26, 1, 0)] = 0; writechunk[CMD_BYTE(26, 2, 0)] = 0; /* Fill in to buffer to size */ writechunk[CMD_BYTE(27, 0, 0)] = 0; writechunk[CMD_BYTE(27, 1, 0)] = 0; writechunk[CMD_BYTE(27, 2, 0)] = 0; } else { /* Set address */ writechunk[CMD_BYTE(24, 0, 0)] = ((0x8 | 0x4) << 4); writechunk[CMD_BYTE(24, 1, 0)] = (curcmd->address >> 8) & 0xff; writechunk[CMD_BYTE(24, 2, 0)] = curcmd->address & 0xff; /* Send/Get our data */ writechunk[CMD_BYTE(25, 0, 0)] = (curcmd->desc & __VPM150M_WR) ? ((0x8 | (0x3 << 1)) << 4) : ((0x8 | (0x3 << 1) | 0x1) << 4); writechunk[CMD_BYTE(25, 1, 0)] = (curcmd->data >> 8) & 0xff; writechunk[CMD_BYTE(25, 2, 0)] = curcmd->data & 0xff; writechunk[CMD_BYTE(26, 0, 0)] = 0; writechunk[CMD_BYTE(26, 1, 0)] = 0; writechunk[CMD_BYTE(26, 2, 0)] = 0; /* Fill in the rest */ writechunk[CMD_BYTE(27, 0, 0)] = 0; writechunk[CMD_BYTE(27, 1, 0)] = 0; writechunk[CMD_BYTE(27, 2, 0)] = 0; } } else if (test_and_clear_bit(VPM150M_SWRESET, &vpmadt032->control)) { for (x = 24; x < 28; x++) { if (x == 24) writechunk[CMD_BYTE(x, 0, 0)] = (0x8 << 4); else writechunk[CMD_BYTE(x, 0, 0)] = 0x00; writechunk[CMD_BYTE(x, 1, 0)] = 0; if (x == 24) writechunk[CMD_BYTE(x, 2, 0)] = 0x01; else writechunk[CMD_BYTE(x, 2, 0)] = 0x00; } } else { for (x = 24; x < 28; x++) { writechunk[CMD_BYTE(x, 0, 0)] = 0x00; writechunk[CMD_BYTE(x, 1, 0)] = 0x00; writechunk[CMD_BYTE(x, 2, 0)] = 0x00; } } /* Add our leds in */ for (x = 24; x < 28; x++) { writechunk[CMD_BYTE(x, 0, 0)] |= leds; } } static inline void cmd_dequeue(struct wctdm *wc, unsigned char *writechunk, int card, int pos) { unsigned long flags; unsigned int curcmd=0; int x; int subaddr = card & 0x3; #ifdef FANCY_ECHOCAN int ecval; ecval = wc->echocanpos; ecval += EC_SIZE_Q * ectrans[(card & 0x3)]; ecval = ecval % EC_SIZE; #endif /* QRV and BRI modules only use commands relating to the first channel */ if ((card & 0x03) && (wc->modtype[card] == MOD_TYPE_QRV)) { return; } if (wc->altcs[card]) subaddr = 0; /* Skip audio */ writechunk += 24; spin_lock_irqsave(&wc->reglock, flags); /* Search for something waiting to transmit */ if (pos) { for (x = 0; x < MAX_COMMANDS; x++) { if ((wc->cmdq[card].cmds[x] & (__CMD_RD | __CMD_WR)) && !(wc->cmdq[card].cmds[x] & (__CMD_TX | __CMD_FIN))) { curcmd = wc->cmdq[card].cmds[x]; wc->cmdq[card].cmds[x] |= (wc->txident << 24) | __CMD_TX; break; } } } if (!curcmd) { /* If nothing else, use filler */ if (wc->modtype[card] == MOD_TYPE_FXS) curcmd = CMD_RD(LINE_STATE); else if (wc->modtype[card] == MOD_TYPE_FXO) curcmd = CMD_RD(12); else if (wc->modtype[card] == MOD_TYPE_BRI) curcmd = 0x101010; else if (wc->modtype[card] == MOD_TYPE_QRV) curcmd = CMD_RD(3); else if (wc->modtype[card] == MOD_TYPE_VPM) { #ifdef FANCY_ECHOCAN if (wc->blinktimer >= 0xf) { curcmd = CMD_WR(0x1ab, 0x0f); } else if (wc->blinktimer == (ectab[ecval] >> 1)) { curcmd = CMD_WR(0x1ab, 0x00); } else #endif curcmd = CMD_RD(0x1a0); } } if (wc->modtype[card] == MOD_TYPE_FXS) { writechunk[CMD_BYTE(card, 0, wc->altcs[card])] = (1 << (subaddr)); if (curcmd & __CMD_WR) writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = (curcmd >> 8) & 0x7f; else writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = 0x80 | ((curcmd >> 8) & 0x7f); writechunk[CMD_BYTE(card, 2, wc->altcs[card])] = curcmd & 0xff; } else if (wc->modtype[card] == MOD_TYPE_FXO) { static const int FXO_ADDRS[4] = { 0x00, 0x08, 0x04, 0x0c }; int idx = CMD_BYTE(card, 0, wc->altcs[card]); if (curcmd & __CMD_WR) writechunk[idx] = 0x20 | FXO_ADDRS[subaddr]; else writechunk[idx] = 0x60 | FXO_ADDRS[subaddr]; writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = (curcmd >> 8) & 0xff; writechunk[CMD_BYTE(card, 2, wc->altcs[card])] = curcmd & 0xff; } else if (wc->modtype[card] == MOD_TYPE_FXSINIT) { /* Special case, we initialize the FXS's into the three-byte command mode then switch to the regular mode. To send it into thee byte mode, treat the path as 6 two-byte commands and in the last one we initialize register 0 to 0x80. All modules read this as the command to switch to daisy chain mode and we're done. */ writechunk[CMD_BYTE(card, 0, wc->altcs[card])] = 0x00; writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = 0x00; if ((card & 0x1) == 0x1) writechunk[CMD_BYTE(card, 2, wc->altcs[card])] = 0x80; else writechunk[CMD_BYTE(card, 2, wc->altcs[card])] = 0x00; } else if (wc->modtype[card] == MOD_TYPE_BRI) { if (unlikely((curcmd != 0x101010) && (curcmd & 0x1010) == 0x1010)) /* b400m CPLD */ writechunk[CMD_BYTE(card, 0, 0)] = 0x55; else /* xhfc */ writechunk[CMD_BYTE(card, 0, 0)] = 0x10; writechunk[CMD_BYTE(card, 1, 0)] = (curcmd >> 8) & 0xff; writechunk[CMD_BYTE(card, 2, 0)] = curcmd & 0xff; } else if (wc->modtype[card] == MOD_TYPE_VPM) { if (curcmd & __CMD_WR) writechunk[CMD_BYTE(card, 0, wc->altcs[card])] = ((card & 0x3) << 4) | 0xc | ((curcmd >> 16) & 0x1); else writechunk[CMD_BYTE(card, 0, wc->altcs[card])] = ((card & 0x3) << 4) | 0xa | ((curcmd >> 16) & 0x1); writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = (curcmd >> 8) & 0xff; writechunk[CMD_BYTE(card, 2, wc->altcs[card])] = curcmd & 0xff; } else if (wc->modtype[card] == MOD_TYPE_QRV) { writechunk[CMD_BYTE(card, 0, wc->altcs[card])] = 0x00; if (!curcmd) { writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = 0x00; writechunk[CMD_BYTE(card, 2, wc->altcs[card])] = 0x00; } else { if (curcmd & __CMD_WR) writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = 0x40 | ((curcmd >> 8) & 0x3f); else writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = 0xc0 | ((curcmd >> 8) & 0x3f); writechunk[CMD_BYTE(card, 2, wc->altcs[card])] = curcmd & 0xff; } } else if (wc->modtype[card] == MOD_TYPE_NONE) { writechunk[CMD_BYTE(card, 0, wc->altcs[card])] = 0x10; writechunk[CMD_BYTE(card, 1, wc->altcs[card])] = 0x10; writechunk[CMD_BYTE(card, 2, wc->altcs[card])] = 0x10; } #if 0 /* XXX */ if (cmddesc < 40) dev_info(&wc->vb.pdev->dev, "Pass %d, card = %d (modtype=%d), pos = %d, CMD_BYTES = %d,%d,%d, (%02x,%02x,%02x) curcmd = %08x\n", cmddesc, card, wc->modtype[card], pos, CMD_BYTE(card, 0), CMD_BYTE(card, 1), CMD_BYTE(card, 2), writechunk[CMD_BYTE(card, 0)], writechunk[CMD_BYTE(card, 1)], writechunk[CMD_BYTE(card, 2)], curcmd); #endif spin_unlock_irqrestore(&wc->reglock, flags); #if 0 /* XXX */ cmddesc++; #endif } static inline void cmd_decipher_vpmadt032(struct wctdm *wc, const u8 *readchunk) { unsigned long flags; struct vpmadt032 *vpm = wc->vpmadt032; struct vpmadt032_cmd *cmd; BUG_ON(!vpm); /* If the hardware is not processing any commands currently, then * there is nothing for us to do here. */ if (list_empty(&vpm->active_cmds)) { return; } spin_lock_irqsave(&vpm->list_lock, flags); cmd = list_entry(vpm->active_cmds.next, struct vpmadt032_cmd, node); if (wc->rxident == cmd->txident) { list_del_init(&cmd->node); } else { cmd = NULL; } spin_unlock_irqrestore(&vpm->list_lock, flags); if (!cmd) { return; } /* Skip audio */ readchunk += 24; /* Store result */ cmd->data = (0xff & readchunk[CMD_BYTE(25, 1, 0)]) << 8; cmd->data |= readchunk[CMD_BYTE(25, 2, 0)]; if (cmd->desc & __VPM150M_WR) { kfree(cmd); } else { cmd->desc |= __VPM150M_FIN; complete(&cmd->complete); } } static inline void cmd_decipher(struct wctdm *wc, const u8 *readchunk, int card) { unsigned long flags; unsigned char ident; int x; /* QRV and BRI modules only use commands relating to the first channel */ if ((card & 0x03) && (wc->modtype[card] == MOD_TYPE_QRV)) { /* || (wc->modtype[card] == MOD_TYPE_BRI))) { */ return; } /* Skip audio */ readchunk += 24; spin_lock_irqsave(&wc->reglock, flags); /* Search for any pending results */ for (x=0;xcmdq[card].cmds[x] & (__CMD_RD | __CMD_WR)) && (wc->cmdq[card].cmds[x] & (__CMD_TX)) && !(wc->cmdq[card].cmds[x] & (__CMD_FIN))) { ident = (wc->cmdq[card].cmds[x] >> 24) & 0xff; if (ident == wc->rxident) { /* Store result */ wc->cmdq[card].cmds[x] |= readchunk[CMD_BYTE(card, 2, wc->altcs[card])]; wc->cmdq[card].cmds[x] |= __CMD_FIN; /* if (card == 0 && wc->cmdq[card].cmds[x] & __CMD_RD) { dev_info(&wc->vb.pdev->dev, "decifer: got response %02x\n", wc->cmdq[card].cmds[x] & 0xff); } */ if (wc->cmdq[card].cmds[x] & __CMD_WR) { /* Go ahead and clear out writes since they need no acknowledgement */ wc->cmdq[card].cmds[x] = 0x00000000; } else if (x >= USER_COMMANDS) { /* Clear out ISR reads */ wc->cmdq[card].isrshadow[x - USER_COMMANDS] = wc->cmdq[card].cmds[x] & 0xff; wc->cmdq[card].cmds[x] = 0x00000000; } break; } } } #if 0 /* XXX */ if (!pos && (cmddesc < 256)) dev_info(&wc->vb.pdev->dev, "Card %d: Command '%08x' => %02x\n",card, wc->cmdq[card].lasttx[pos], wc->cmdq[card].lastrd[pos]); #endif spin_unlock_irqrestore(&wc->reglock, flags); } static inline void cmd_checkisr(struct wctdm *wc, int card) { if (!wc->cmdq[card].cmds[USER_COMMANDS + 0]) { if (wc->sethook[card]) { wc->cmdq[card].cmds[USER_COMMANDS + 0] = wc->sethook[card]; wc->sethook[card] = 0; } else if (wc->modtype[card] == MOD_TYPE_FXS) { wc->cmdq[card].cmds[USER_COMMANDS + 0] = CMD_RD(68); /* Hook state */ } else if (wc->modtype[card] == MOD_TYPE_FXO) { wc->cmdq[card].cmds[USER_COMMANDS + 0] = CMD_RD(5); /* Hook/Ring state */ } else if (wc->modtype[card] == MOD_TYPE_QRV) { wc->cmdq[card & 0xfc].cmds[USER_COMMANDS + 0] = CMD_RD(3); /* COR/CTCSS state */ } else if (wc->modtype[card] == MOD_TYPE_BRI) { wc->cmdq[card].cmds[USER_COMMANDS + 0] = wctdm_bri_checkisr(wc, card, 0); #ifdef VPM_SUPPORT } else if (wc->modtype[card] == MOD_TYPE_VPM) { wc->cmdq[card].cmds[USER_COMMANDS + 0] = CMD_RD(0xb9); /* DTMF interrupt */ #endif } } if (!wc->cmdq[card].cmds[USER_COMMANDS + 1]) { if (wc->modtype[card] == MOD_TYPE_FXS) { #ifdef PAQ_DEBUG wc->cmdq[card].cmds[USER_COMMANDS + 1] = CMD_RD(19); /* Transistor interrupts */ #else wc->cmdq[card].cmds[USER_COMMANDS + 1] = CMD_RD(LINE_STATE); #endif } else if (wc->modtype[card] == MOD_TYPE_FXO) { wc->cmdq[card].cmds[USER_COMMANDS + 1] = CMD_RD(29); /* Battery */ } else if (wc->modtype[card] == MOD_TYPE_QRV) { wc->cmdq[card & 0xfc].cmds[USER_COMMANDS + 1] = CMD_RD(3); /* Battery */ } else if (wc->modtype[card] == MOD_TYPE_BRI) { wc->cmdq[card].cmds[USER_COMMANDS + 1] = wctdm_bri_checkisr(wc, card, 1); #ifdef VPM_SUPPORT } else if (wc->modtype[card] == MOD_TYPE_VPM) { wc->cmdq[card].cmds[USER_COMMANDS + 1] = CMD_RD(0xbd); /* DTMF interrupt */ #endif } } } /** * insert_tdm_data() - Move TDM data from channels to sframe. * */ static void insert_tdm_data(const struct wctdm *wc, u8 *sframe) { int i; register u8 *chanchunk; for (i = 0; i < wc->avchannels; i += 4) { chanchunk = &wc->chans[0 + i]->chan.writechunk[0]; sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0]; sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1]; sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2]; sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3]; sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4]; sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5]; sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6]; sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7]; chanchunk = &wc->chans[1 + i]->chan.writechunk[0]; sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0]; sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1]; sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2]; sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3]; sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4]; sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5]; sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6]; sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7]; chanchunk = &wc->chans[2 + i]->chan.writechunk[0]; sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0]; sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1]; sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2]; sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3]; sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4]; sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5]; sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6]; sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7]; chanchunk = &wc->chans[3 + i]->chan.writechunk[0]; sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0]; sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1]; sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2]; sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3]; sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4]; sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5]; sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6]; sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7]; } } static inline void wctdm_transmitprep(struct wctdm *wc, unsigned char *writechunk) { int x,y; struct dahdi_span *s; /* Calculate Transmission */ if (likely(wc->initialized)) { for (x = 0; x < MAX_SPANS; x++) { if (wc->spans[x]) { s = &wc->spans[x]->span; dahdi_transmit(s); } } insert_tdm_data(wc, writechunk); #ifdef CONFIG_VOICEBUS_ECREFERENCE for (x = 0; x < wc->avchannels; ++x) { __dahdi_fifo_put(wc->ec_reference[x], wc->chans[x]->chan.writechunk, DAHDI_CHUNKSIZE); } #endif } for (x = 0; x < DAHDI_CHUNKSIZE; x++) { /* Send a sample, as a 32-bit word */ /* TODO: ABK: hmm, this was originally mods_per_board, but we * need to worry about all the active "voice" timeslots, since * BRI modules have a different number of TDM channels than * installed modules. */ for (y = 0; y < wc->avchannels; y++) { if (!x && y < wc->mods_per_board) { cmd_checkisr(wc, y); } if (y < wc->mods_per_board) cmd_dequeue(wc, writechunk, y, x); } if (!x) wc->blinktimer++; if (wc->vpm100) { for (y = NUM_MODULES; y < NUM_MODULES + NUM_EC; y++) { if (!x) cmd_checkisr(wc, y); cmd_dequeue(wc, writechunk, y, x); } #ifdef FANCY_ECHOCAN if (wc->vpm100 && wc->blinktimer >= 0xf) { wc->blinktimer = -1; wc->echocanpos++; } #endif } else if (wc->vpmadt032) { cmd_dequeue_vpmadt032(wc, writechunk); } if (x < DAHDI_CHUNKSIZE - 1) { writechunk[EFRAME_SIZE] = wc->ctlreg; writechunk[EFRAME_SIZE + 1] = wc->txident++; if ((wc->desc->ports == 4) && ((wc->ctlreg & 0x10) || (wc->modtype[NUM_MODULES] == MOD_TYPE_NONE))) { writechunk[EFRAME_SIZE + 2] = 0; for (y = 0; y < 4; y++) { if (wc->modtype[y] == MOD_TYPE_NONE) writechunk[EFRAME_SIZE + 2] |= (1 << y); } } else writechunk[EFRAME_SIZE + 2] = 0xf; } writechunk += (EFRAME_SIZE + EFRAME_GAP); } } static inline int wctdm_setreg_full(struct wctdm *wc, int card, int addr, int val, int inisr) { unsigned long flags; int hit=0; /* QRV and BRI cards are only addressed at their first "port" */ if ((card & 0x03) && ((wc->modtype[card] == MOD_TYPE_QRV) || (wc->modtype[card] == MOD_TYPE_BRI))) return 0; do { spin_lock_irqsave(&wc->reglock, flags); hit = empty_slot(wc, card); if (hit > -1) { wc->cmdq[card].cmds[hit] = CMD_WR(addr, val); } spin_unlock_irqrestore(&wc->reglock, flags); if (inisr) break; if (hit < 0) { interruptible_sleep_on(&wc->regq); if (signal_pending(current)) return -ERESTARTSYS; } } while (hit < 0); return (hit > -1) ? 0 : -1; } static inline int wctdm_setreg_intr(struct wctdm *wc, int card, int addr, int val) { return wctdm_setreg_full(wc, card, addr, val, 1); } inline int wctdm_setreg(struct wctdm *wc, int card, int addr, int val) { return wctdm_setreg_full(wc, card, addr, val, 0); } inline int wctdm_getreg(struct wctdm *wc, int card, int addr) { unsigned long flags; int hit; int ret=0; /* if a QRV card, use only its first channel */ if (wc->modtype[card] == MOD_TYPE_QRV) { if (card & 3) return(0); } do { spin_lock_irqsave(&wc->reglock, flags); hit = empty_slot(wc, card); if (hit > -1) { wc->cmdq[card].cmds[hit] = CMD_RD(addr); } spin_unlock_irqrestore(&wc->reglock, flags); if (hit < 0) { interruptible_sleep_on(&wc->regq); if (signal_pending(current)) return -ERESTARTSYS; } } while (hit < 0); do { spin_lock_irqsave(&wc->reglock, flags); if (wc->cmdq[card].cmds[hit] & __CMD_FIN) { ret = wc->cmdq[card].cmds[hit] & 0xff; wc->cmdq[card].cmds[hit] = 0x00000000; hit = -1; } spin_unlock_irqrestore(&wc->reglock, flags); if (hit > -1) { interruptible_sleep_on(&wc->regq); if (signal_pending(current)) return -ERESTARTSYS; } } while (hit > -1); return ret; } static inline unsigned char wctdm_vpm_in(struct wctdm *wc, int unit, const unsigned int addr) { return wctdm_getreg(wc, unit + NUM_MODULES, addr); } static inline void wctdm_vpm_out(struct wctdm *wc, int unit, const unsigned int addr, const unsigned char val) { wctdm_setreg(wc, unit + NUM_MODULES, addr, val); } static inline void cmd_retransmit(struct wctdm *wc) { int x,y; unsigned long flags; /* Force retransmissions */ spin_lock_irqsave(&wc->reglock, flags); for (x=0;xmods_per_board; y++) { if (wc->modtype[y] != MOD_TYPE_BRI) { if (!(wc->cmdq[y].cmds[x] & __CMD_FIN)) wc->cmdq[y].cmds[x] &= ~(__CMD_TX | (0xff << 24)); } } } spin_unlock_irqrestore(&wc->reglock, flags); #ifdef VPM_SUPPORT if (wc->vpmadt032) vpmadt032_resend(wc->vpmadt032); #endif } /** * extract_tdm_data() - Move TDM data from sframe to channels. * */ static void extract_tdm_data(struct wctdm *wc, const u8 *sframe) { int i; register u8 *chanchunk; for (i = 0; i < wc->avchannels; i += 4) { chanchunk = &wc->chans[0 + i]->chan.readchunk[0]; chanchunk[0] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*0]; chanchunk[1] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*1]; chanchunk[2] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*2]; chanchunk[3] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*3]; chanchunk[4] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*4]; chanchunk[5] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*5]; chanchunk[6] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*6]; chanchunk[7] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*7]; chanchunk = &wc->chans[1 + i]->chan.readchunk[0]; chanchunk[0] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*0]; chanchunk[1] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*1]; chanchunk[2] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*2]; chanchunk[3] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*3]; chanchunk[4] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*4]; chanchunk[5] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*5]; chanchunk[6] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*6]; chanchunk[7] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*7]; chanchunk = &wc->chans[2 + i]->chan.readchunk[0]; chanchunk[0] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*0]; chanchunk[1] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*1]; chanchunk[2] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*2]; chanchunk[3] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*3]; chanchunk[4] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*4]; chanchunk[5] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*5]; chanchunk[6] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*6]; chanchunk[7] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*7]; chanchunk = &wc->chans[3 + i]->chan.readchunk[0]; chanchunk[0] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*0]; chanchunk[1] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*1]; chanchunk[2] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*2]; chanchunk[3] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*3]; chanchunk[4] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*4]; chanchunk[5] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*5]; chanchunk[6] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*6]; chanchunk[7] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*7]; } } static inline void wctdm_receiveprep(struct wctdm *wc, const u8 *readchunk) { int x,y; bool irqmiss = 0; unsigned char expected; if (unlikely(!is_good_frame(readchunk))) return; if (likely(wc->initialized)) extract_tdm_data(wc, readchunk); for (x = 0; x < DAHDI_CHUNKSIZE; x++) { if (x < DAHDI_CHUNKSIZE - 1) { expected = wc->rxident+1; wc->rxident = readchunk[EFRAME_SIZE + 1]; if (wc->rxident != expected) { irqmiss = 1; cmd_retransmit(wc); } } for (y = 0; y < wc->avchannels; y++) { cmd_decipher(wc, readchunk, y); } if (wc->vpm100) { for (y = NUM_MODULES; y < NUM_MODULES + NUM_EC; y++) cmd_decipher(wc, readchunk, y); } else if (wc->vpmadt032) cmd_decipher_vpmadt032(wc, readchunk); readchunk += (EFRAME_SIZE + EFRAME_GAP); } /* XXX We're wasting 8 taps. We should get closer :( */ if (likely(wc->initialized)) { for (x = 0; x < wc->avchannels; x++) { struct dahdi_chan *c = &wc->chans[x]->chan; #ifdef CONFIG_VOICEBUS_ECREFERENCE unsigned char buffer[DAHDI_CHUNKSIZE]; __dahdi_fifo_get(wc->ec_reference[x], buffer, ARRAY_SIZE(buffer)); dahdi_ec_chunk(c, c->readchunk, buffer); #else dahdi_ec_chunk(c, c->readchunk, c->writechunk); #endif } for (x = 0; x < MAX_SPANS; x++) { if (wc->spans[x]) { struct dahdi_span *s = &wc->spans[x]->span; #if 1 /* Check for digital spans */ if (s->ops->chanconfig == b400m_chanconfig) { BUG_ON(!is_hx8(wc)); if (s->flags & DAHDI_FLAG_RUNNING) b400m_dchan(s); } #endif dahdi_receive(s); if (unlikely(irqmiss)) ++s->irqmisses; } } } /* Wake up anyone sleeping to read/write a new register */ wake_up_interruptible_all(&wc->regq); } static int wait_access(struct wctdm *wc, int card) { unsigned char data=0; int count = 0; #define MAX 10 /* attempts */ /* Wait for indirect access */ while (count++ < MAX) { data = wctdm_getreg(wc, card, I_STATUS); if (!data) return 0; } if (count > (MAX-1)) dev_notice(&wc->vb.pdev->dev, " ##### Loop error (%02x) #####\n", data); return 0; } static unsigned char translate_3215(unsigned char address) { int x; for (x = 0; x < ARRAY_SIZE(indirect_regs); x++) { if (indirect_regs[x].address == address) { address = indirect_regs[x].altaddr; break; } } return address; } static int wctdm_proslic_setreg_indirect(struct wctdm *wc, int card, unsigned char address, unsigned short data) { int res = -1; /* Translate 3215 addresses */ if (wc->flags[card] & FLAG_3215) { address = translate_3215(address); if (address == 255) return 0; } if (!wait_access(wc, card)) { wctdm_setreg(wc, card, IDA_LO,(unsigned char)(data & 0xFF)); wctdm_setreg(wc, card, IDA_HI,(unsigned char)((data & 0xFF00)>>8)); wctdm_setreg(wc, card, IAA,address); res = 0; }; return res; } static int wctdm_proslic_getreg_indirect(struct wctdm *wc, int card, unsigned char address) { int res = -1; char *p=NULL; /* Translate 3215 addresses */ if (wc->flags[card] & FLAG_3215) { address = translate_3215(address); if (address == 255) return 0; } if (!wait_access(wc, card)) { wctdm_setreg(wc, card, IAA, address); if (!wait_access(wc, card)) { unsigned char data1, data2; data1 = wctdm_getreg(wc, card, IDA_LO); data2 = wctdm_getreg(wc, card, IDA_HI); res = data1 | (data2 << 8); } else p = "Failed to wait inside\n"; } else p = "failed to wait\n"; if (p) dev_notice(&wc->vb.pdev->dev, "%s", p); return res; } static int wctdm_proslic_init_indirect_regs(struct wctdm *wc, int card) { unsigned char i; for (i = 0; i < ARRAY_SIZE(indirect_regs); i++) { if (wctdm_proslic_setreg_indirect(wc, card, indirect_regs[i].address, indirect_regs[i].initial)) return -1; } return 0; } static int wctdm_proslic_verify_indirect_regs(struct wctdm *wc, int card) { int passed = 1; unsigned short i, initial; int j; for (i = 0; i < ARRAY_SIZE(indirect_regs); i++) { j = wctdm_proslic_getreg_indirect(wc, card, (unsigned char) indirect_regs[i].address); if (j < 0) { dev_notice(&wc->vb.pdev->dev, "Failed to read indirect register %d\n", i); return -1; } initial= indirect_regs[i].initial; if ( j != initial && (!(wc->flags[card] & FLAG_3215) || (indirect_regs[i].altaddr != 255))) { dev_notice(&wc->vb.pdev->dev, "!!!!!!! %s iREG %X = %X should be %X\n", indirect_regs[i].name,indirect_regs[i].address,j,initial ); passed = 0; } } if (passed) { if (debug & DEBUG_CARD) dev_info(&wc->vb.pdev->dev, "Init Indirect Registers completed successfully.\n"); } else { dev_notice(&wc->vb.pdev->dev, " !!!!! Init Indirect Registers UNSUCCESSFULLY.\n"); return -1; } return 0; } /* 1ms interrupt */ static inline void wctdm_proslic_check_oppending(struct wctdm *wc, int card) { struct fxs *const fxs = &wc->mods[card].fxs; int res; /* Monitor the Pending LF state change, for the next 100ms */ if (fxs->lasttxhook & SLIC_LF_OPPENDING) { spin_lock(&fxs->lasttxhooklock); if (!(fxs->lasttxhook & SLIC_LF_OPPENDING)) { spin_unlock(&fxs->lasttxhooklock); return; } res = wc->cmdq[card].isrshadow[1]; if ((res & SLIC_LF_SETMASK) == (fxs->lasttxhook & SLIC_LF_SETMASK)) { fxs->lasttxhook &= SLIC_LF_SETMASK; fxs->oppending_ms = 0; if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "SLIC_LF OK: card=%d shadow=%02x lasttxhook=%02x intcount=%d \n", card, res, fxs->lasttxhook, wc->intcount); } } else if (fxs->oppending_ms) { /* if timing out */ if (--fxs->oppending_ms == 0) { /* Timed out, resend the linestate */ wc->sethook[card] = CMD_WR(LINE_STATE, fxs->lasttxhook); if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "SLIC_LF RETRY: card=%d shadow=%02x lasttxhook=%02x intcount=%d \n", card, res, fxs->lasttxhook, wc->intcount); } } } else { /* Start 100ms Timeout */ fxs->oppending_ms = 100; } spin_unlock(&fxs->lasttxhooklock); } } /* 256ms interrupt */ static inline void wctdm_proslic_recheck_sanity(struct wctdm *wc, int card) { struct fxs *const fxs = &wc->mods[card].fxs; int res; unsigned long flags; #ifdef PAQ_DEBUG res = wc->cmdq[card].isrshadow[1]; res &= ~0x3; if (res) { wc->cmdq[card].isrshadow[1]=0; fxs->palarms++; if (fxs->palarms < MAX_ALARMS) { dev_notice(&wc->vb.pdev->dev, "Power alarm (%02x) on module %d, resetting!\n", res, card + 1); wc->sethook[card] = CMD_WR(19, res); /* Update shadow register to avoid extra power alarms until next read */ wc->cmdq[card].isrshadow[1] = 0; } else { if (fxs->palarms == MAX_ALARMS) dev_notice(&wc->vb.pdev->dev, "Too many power alarms on card %d, NOT resetting!\n", card + 1); } } #else spin_lock_irqsave(&fxs->lasttxhooklock, flags); res = wc->cmdq[card].isrshadow[1]; #if 0 /* This makes sure the lasthook was put in reg 64 the linefeed reg */ if (fxs->lasttxhook & SLIC_LF_OPPENDING) { if ((res & SLIC_LF_SETMASK) == (fxs->lasttxhook & SLIC_LF_SETMASK)) { fxs->lasttxhook &= SLIC_LF_SETMASK; if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "SLIC_LF OK: intcount=%d channel=%d shadow=%02x lasttxhook=%02x\n", wc->intcount, card, res, fxs->lasttxhook); } } else if (!(wc->intcount & 0x03)) { wc->sethook[card] = CMD_WR(LINE_STATE, fxs->lasttxhook); if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "SLIC_LF RETRY: intcount=%d channel=%d shadow=%02x lasttxhook=%02x\n", wc->intcount, card, res, fxs->lasttxhook); } } } if (debug & DEBUG_CARD) { if (!(wc->intcount % 100)) { dev_info(&wc->vb.pdev->dev, "SLIC_LF DEBUG: intcount=%d channel=%d shadow=%02x lasttxhook=%02x\n", wc->intcount, card, res, fxs->lasttxhook); } } #endif res = !res && /* reg 64 has to be zero at last isr read */ !(fxs->lasttxhook & SLIC_LF_OPPENDING) && /* not a transition */ fxs->lasttxhook; /* not an intended zero */ spin_unlock_irqrestore(&fxs->lasttxhooklock, flags); if (res) { fxs->palarms++; if (fxs->palarms < MAX_ALARMS) { dev_notice(&wc->vb.pdev->dev, "Power alarm on module %d, resetting!\n", card + 1); spin_lock_irqsave(&fxs->lasttxhooklock, flags); if (fxs->lasttxhook == SLIC_LF_RINGING) { fxs->lasttxhook = POLARITY_XOR(card) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD;; } fxs->lasttxhook |= SLIC_LF_OPPENDING; wc->sethook[card] = CMD_WR(LINE_STATE, fxs->lasttxhook); spin_unlock_irqrestore(&fxs->lasttxhooklock, flags); /* Update shadow register to avoid extra power alarms until next read */ wc->cmdq[card].isrshadow[1] = fxs->lasttxhook; } else { if (fxs->palarms == MAX_ALARMS) dev_notice(&wc->vb.pdev->dev, "Too many power alarms on card %d, NOT resetting!\n", card + 1); } } #endif } static inline void wctdm_qrvdri_check_hook(struct wctdm *wc, int card) { signed char b,b1; int qrvcard = card & 0xfc; if (wc->qrvdebtime[card] >= 2) wc->qrvdebtime[card]--; b = wc->cmdq[qrvcard].isrshadow[0]; /* Hook/Ring state */ b &= 0xcc; /* use bits 3-4 and 6-7 only */ if (wc->radmode[qrvcard] & RADMODE_IGNORECOR) b &= ~4; else if (!(wc->radmode[qrvcard] & RADMODE_INVERTCOR)) b ^= 4; if (wc->radmode[qrvcard + 1] | RADMODE_IGNORECOR) b &= ~0x40; else if (!(wc->radmode[qrvcard + 1] | RADMODE_INVERTCOR)) b ^= 0x40; if ((wc->radmode[qrvcard] & RADMODE_IGNORECT) || (!(wc->radmode[qrvcard] & RADMODE_EXTTONE))) b &= ~8; else if (!(wc->radmode[qrvcard] & RADMODE_EXTINVERT)) b ^= 8; if ((wc->radmode[qrvcard + 1] & RADMODE_IGNORECT) || (!(wc->radmode[qrvcard + 1] & RADMODE_EXTTONE))) b &= ~0x80; else if (!(wc->radmode[qrvcard + 1] & RADMODE_EXTINVERT)) b ^= 0x80; /* now b & MASK should be zero, if its active */ /* check for change in chan 0 */ if ((!(b & 0xc)) != wc->qrvhook[qrvcard + 2]) { wc->qrvdebtime[qrvcard] = wc->debouncetime[qrvcard]; wc->qrvhook[qrvcard + 2] = !(b & 0xc); } /* if timed-out and ready */ if (wc->qrvdebtime[qrvcard] == 1) { b1 = wc->qrvhook[qrvcard + 2]; if (debug) dev_info(&wc->vb.pdev->dev, "QRV channel %d rx state changed to %d\n",qrvcard,wc->qrvhook[qrvcard + 2]); dahdi_hooksig(wc->aspan->span.chans[qrvcard], (b1) ? DAHDI_RXSIG_OFFHOOK : DAHDI_RXSIG_ONHOOK); wc->qrvdebtime[card] = 0; } /* check for change in chan 1 */ if ((!(b & 0xc0)) != wc->qrvhook[qrvcard + 3]) { wc->qrvdebtime[qrvcard + 1] = QRV_DEBOUNCETIME; wc->qrvhook[qrvcard + 3] = !(b & 0xc0); } if (wc->qrvdebtime[qrvcard + 1] == 1) { b1 = wc->qrvhook[qrvcard + 3]; if (debug) dev_info(&wc->vb.pdev->dev, "QRV channel %d rx state changed to %d\n",qrvcard + 1,wc->qrvhook[qrvcard + 3]); dahdi_hooksig(wc->aspan->span.chans[qrvcard + 1], (b1) ? DAHDI_RXSIG_OFFHOOK : DAHDI_RXSIG_ONHOOK); wc->qrvdebtime[card] = 0; } return; } static inline void wctdm_voicedaa_check_hook(struct wctdm *wc, int card) { #define MS_PER_CHECK_HOOK 1 unsigned char res; signed char b; unsigned int abs_voltage; struct fxo *fxo = &wc->mods[card].fxo; /* Try to track issues that plague slot one FXO's */ b = wc->cmdq[card].isrshadow[0]; /* Hook/Ring state */ b &= 0x9b; if (fxo->offhook) { if (b != 0x9) wctdm_setreg_intr(wc, card, 5, 0x9); } else { if (b != 0x8) wctdm_setreg_intr(wc, card, 5, 0x8); } if (!fxo->offhook) { if (fwringdetect || neonmwi_monitor) { /* Look for ring status bits (Ring Detect Signal Negative and * Ring Detect Signal Positive) to transition back and forth * some number of times to indicate that a ring is occurring. * Provide some number of samples to allow for the transitions * to occur before ginving up. * NOTE: neon mwi voltages will trigger one of these bits to go active * but not to have transitions between the two bits (i.e. no negative * to positive or positive to negative transversals ) */ res = wc->cmdq[card].isrshadow[0] & 0x60; if (0 == wc->mods[card].fxo.wasringing) { if (res) { /* Look for positive/negative crossings in ring status reg */ fxo->wasringing = 2; fxo->ringdebounce = ringdebounce /16; fxo->lastrdtx = res; fxo->lastrdtx_count = 0; } } else if (2 == fxo->wasringing) { /* If ring detect signal has transversed */ if (res && res != fxo->lastrdtx) { /* if there are at least 3 ring polarity transversals */ if (++fxo->lastrdtx_count >= 2) { fxo->wasringing = 1; if (debug) dev_info(&wc->vb.pdev->dev, "FW RING on %d/%d!\n", wc->aspan->span.spanno, card + 1); dahdi_hooksig(wc->aspan->span.chans[card], DAHDI_RXSIG_RING); fxo->ringdebounce = ringdebounce / 16; } else { fxo->lastrdtx = res; fxo->ringdebounce = ringdebounce / 16; } /* ring indicator (positve or negative) has not transitioned, check debounce count */ } else if (--fxo->ringdebounce == 0) { fxo->wasringing = 0; } } else { /* I am in ring state */ if (res) { /* If any ringdetect bits are still active */ fxo->ringdebounce = ringdebounce / 16; } else if (--fxo->ringdebounce == 0) { fxo->wasringing = 0; if (debug) dev_info(&wc->vb.pdev->dev, "FW NO RING on %d/%d!\n", wc->aspan->span.spanno, card + 1); dahdi_hooksig(wc->aspan->span.chans[card], DAHDI_RXSIG_OFFHOOK); } } } else { res = wc->cmdq[card].isrshadow[0]; if ((res & 0x60) && (fxo->battery == BATTERY_PRESENT)) { fxo->ringdebounce += (DAHDI_CHUNKSIZE * 16); if (fxo->ringdebounce >= DAHDI_CHUNKSIZE * ringdebounce) { if (!fxo->wasringing) { fxo->wasringing = 1; dahdi_hooksig(wc->aspan->span.chans[card], DAHDI_RXSIG_RING); if (debug) dev_info(&wc->vb.pdev->dev, "RING on %d/%d!\n", wc->aspan->span.spanno, card + 1); } fxo->ringdebounce = DAHDI_CHUNKSIZE * ringdebounce; } } else { fxo->ringdebounce -= DAHDI_CHUNKSIZE * 4; if (fxo->ringdebounce <= 0) { if (fxo->wasringing) { fxo->wasringing = 0; dahdi_hooksig(wc->aspan->span.chans[card], DAHDI_RXSIG_OFFHOOK); if (debug) dev_info(&wc->vb.pdev->dev, "NO RING on %d/%d!\n", wc->aspan->span.spanno, card + 1); } fxo->ringdebounce = 0; } } } } b = wc->cmdq[card].isrshadow[1]; /* Voltage */ abs_voltage = abs(b); if (fxovoltage) { if (!(wc->intcount % 100)) { dev_info(&wc->vb.pdev->dev, "Port %d: Voltage: %d Debounce %d\n", card + 1, b, fxo->battdebounce); } } if (unlikely(DAHDI_RXSIG_INITIAL == wc->aspan->span.chans[card]->rxhooksig)) { /* * dahdi-base will set DAHDI_RXSIG_INITIAL after a * DAHDI_STARTUP or DAHDI_CHANCONFIG ioctl so that new events * will be queued on the channel with the current received * hook state. Channels that use robbed-bit signalling always * report the current received state via the dahdi_rbsbits * call. Since we only call dahdi_hooksig when we've detected * a change to report, let's forget our current state in order * to force us to report it again via dahdi_hooksig. * */ fxo->battery = BATTERY_UNKNOWN; } if (abs_voltage < battthresh) { /* possible existing states: battery lost, no debounce timer battery lost, debounce timer (going to battery present) battery present or unknown, no debounce timer battery present or unknown, debounce timer (going to battery lost) */ if (fxo->battery == BATTERY_LOST) { if (fxo->battdebounce) { /* we were going to BATTERY_PRESENT, but battery was lost again, so clear the debounce timer */ fxo->battdebounce = 0; } } else { if (fxo->battdebounce) { /* going to BATTERY_LOST, see if we are there yet */ if (--fxo->battdebounce == 0) { fxo->battery = BATTERY_LOST; if (debug) dev_info(&wc->vb.pdev->dev, "NO BATTERY on %d/%d!\n", wc->aspan->span.spanno, card + 1); #ifdef JAPAN if (!wc->ohdebounce && wc->offhook) { dahdi_hooksig(wc->aspan->chans[card], DAHDI_RXSIG_ONHOOK); if (debug) dev_info(&wc->vb.pdev->dev, "Signalled On Hook\n"); #ifdef ZERO_BATT_RING wc->onhook++; #endif } #else dahdi_hooksig(wc->aspan->span.chans[card], DAHDI_RXSIG_ONHOOK); /* set the alarm timer, taking into account that part of its time period has already passed while debouncing occurred */ fxo->battalarm = (battalarm - battdebounce) / MS_PER_CHECK_HOOK; #endif } } else { /* start the debounce timer to verify that battery has been lost */ fxo->battdebounce = battdebounce / MS_PER_CHECK_HOOK; } } } else { /* possible existing states: battery lost or unknown, no debounce timer battery lost or unknown, debounce timer (going to battery present) battery present, no debounce timer battery present, debounce timer (going to battery lost) */ if (fxo->battery == BATTERY_PRESENT) { if (fxo->battdebounce) { /* we were going to BATTERY_LOST, but battery appeared again, so clear the debounce timer */ fxo->battdebounce = 0; } } else { if (fxo->battdebounce) { /* going to BATTERY_PRESENT, see if we are there yet */ if (--fxo->battdebounce == 0) { fxo->battery = BATTERY_PRESENT; if (debug) { dev_info(&wc->vb.pdev->dev, "BATTERY on %d/%d (%s)!\n", wc->aspan->span.spanno, card + 1, (b < 0) ? "-" : "+"); } #ifdef ZERO_BATT_RING if (wc->onhook) { wc->onhook = 0; dahdi_hooksig(wc->aspan->chans[card], DAHDI_RXSIG_OFFHOOK); if (debug) dev_info(&wc->vb.pdev->dev, "Signalled Off Hook\n"); } #else dahdi_hooksig(wc->aspan->span.chans[card], DAHDI_RXSIG_OFFHOOK); #endif /* set the alarm timer, taking into account that part of its time period has already passed while debouncing occurred */ fxo->battalarm = (battalarm - battdebounce) / MS_PER_CHECK_HOOK; } } else { /* start the debounce timer to verify that battery has appeared */ fxo->battdebounce = battdebounce / MS_PER_CHECK_HOOK; } } if (fxo->lastpol >= 0) { if (b < 0) { fxo->lastpol = -1; fxo->polaritydebounce = POLARITY_DEBOUNCE / MS_PER_CHECK_HOOK; } } if (fxo->lastpol <= 0) { if (b > 0) { fxo->lastpol = 1; fxo->polaritydebounce = POLARITY_DEBOUNCE / MS_PER_CHECK_HOOK; } } } if (fxo->battalarm) { if (--fxo->battalarm == 0) { /* the alarm timer has expired, so update the battery alarm state for this channel */ dahdi_alarm_channel(wc->aspan->span.chans[card], fxo->battery == BATTERY_LOST ? DAHDI_ALARM_RED : DAHDI_ALARM_NONE); } } if (fxo->polaritydebounce) { fxo->polaritydebounce--; if (fxo->polaritydebounce < 1) { if (fxo->lastpol != fxo->polarity) { if (debug & DEBUG_CARD) dev_info(&wc->vb.pdev->dev, "%lu Polarity reversed (%d -> %d)\n", jiffies, fxo->polarity, fxo->lastpol); if (fxo->polarity) dahdi_qevent_lock(wc->aspan->span.chans[card], DAHDI_EVENT_POLARITY); fxo->polarity = fxo->lastpol; } } } /* Look for neon mwi pulse */ if (neonmwi_monitor && !wc->mods[card].fxo.offhook) { /* Look for 4 consecutive voltage readings * where the voltage is over the neon limit but * does not vary greatly from the last reading */ if (fxo->battery == 1 && abs_voltage > neonmwi_level && (0 == fxo->neonmwi_last_voltage || (b >= fxo->neonmwi_last_voltage - neonmwi_envelope && b <= fxo->neonmwi_last_voltage + neonmwi_envelope ))) { fxo->neonmwi_last_voltage = b; if (NEONMWI_ON_DEBOUNCE == fxo->neonmwi_debounce) { fxo->neonmwi_offcounter = neonmwi_offlimit_cycles; if (0 == fxo->neonmwi_state) { dahdi_qevent_lock(wc->aspan->span.chans[card], DAHDI_EVENT_NEONMWI_ACTIVE); fxo->neonmwi_state = 1; if (debug) dev_info(&wc->vb.pdev->dev, "NEON MWI active for card %d\n", card+1); } fxo->neonmwi_debounce++; /* terminate the processing */ } else if (NEONMWI_ON_DEBOUNCE > fxo->neonmwi_debounce) { fxo->neonmwi_debounce++; } else { /* Insure the count gets reset */ fxo->neonmwi_offcounter = neonmwi_offlimit_cycles; } } else { fxo->neonmwi_debounce = 0; fxo->neonmwi_last_voltage = 0; } /* If no neon mwi pulse for given period of time, indicte no neon mwi state */ if (fxo->neonmwi_state && 0 < fxo->neonmwi_offcounter ) { fxo->neonmwi_offcounter--; if (0 == fxo->neonmwi_offcounter) { dahdi_qevent_lock(wc->aspan->span.chans[card], DAHDI_EVENT_NEONMWI_INACTIVE); fxo->neonmwi_state = 0; if (debug) dev_info(&wc->vb.pdev->dev, "NEON MWI cleared for card %d\n", card+1); } } } #undef MS_PER_CHECK_HOOK } static void wctdm_fxs_hooksig(struct wctdm *wc, const int card, enum dahdi_txsig txsig) { int x = 0; unsigned long flags; struct fxs *const fxs = &wc->mods[card].fxs; spin_lock_irqsave(&fxs->lasttxhooklock, flags); switch (txsig) { case DAHDI_TXSIG_ONHOOK: switch (wc->aspan->span.chans[card]->sig) { case DAHDI_SIG_EM: case DAHDI_SIG_FXOKS: case DAHDI_SIG_FXOLS: x = fxs->idletxhookstate; break; case DAHDI_SIG_FXOGS: x = (POLARITY_XOR(card)) ? SLIC_LF_RING_OPEN : SLIC_LF_TIP_OPEN; break; } break; case DAHDI_TXSIG_OFFHOOK: switch (wc->aspan->span.chans[card]->sig) { case DAHDI_SIG_EM: x = (POLARITY_XOR(card)) ? SLIC_LF_ACTIVE_FWD : SLIC_LF_ACTIVE_REV; break; default: x = fxs->idletxhookstate; break; } break; case DAHDI_TXSIG_START: x = SLIC_LF_RINGING; break; case DAHDI_TXSIG_KEWL: x = SLIC_LF_OPEN; break; default: spin_unlock_irqrestore(&fxs->lasttxhooklock, flags); dev_notice(&wc->vb.pdev->dev, "wctdm24xxp: Can't set tx state to %d\n", txsig); return; } if (x != fxs->lasttxhook) { fxs->lasttxhook = x | SLIC_LF_OPPENDING; wc->sethook[card] = CMD_WR(LINE_STATE, fxs->lasttxhook); spin_unlock_irqrestore(&fxs->lasttxhooklock, flags); if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Setting FXS hook state " "to %d (%02x) intcount=%d\n", txsig, x, wc->intcount); } } else { spin_unlock_irqrestore(&fxs->lasttxhooklock, flags); } } static void wctdm_fxs_off_hook(struct wctdm *wc, const int card) { struct fxs *const fxs = &wc->mods[card].fxs; if (debug & DEBUG_CARD) dev_info(&wc->vb.pdev->dev, "fxs_off_hook: Card %d Going off hook\n", card); switch (fxs->lasttxhook) { case SLIC_LF_RINGING: /* Ringing */ case SLIC_LF_OHTRAN_FWD: /* Forward On Hook Transfer */ case SLIC_LF_OHTRAN_REV: /* Reverse On Hook Transfer */ /* just detected OffHook, during Ringing or OnHookTransfer */ fxs->idletxhookstate = POLARITY_XOR(card) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; break; } wctdm_fxs_hooksig(wc, card, DAHDI_TXSIG_OFFHOOK); dahdi_hooksig(wc->aspan->span.chans[card], DAHDI_RXSIG_OFFHOOK); #ifdef DEBUG if (robust) wctdm_init_proslic(wc, card, 1, 0, 1); #endif fxs->oldrxhook = 1; } static void wctdm_fxs_on_hook(struct wctdm *wc, const int card) { struct fxs *const fxs = &wc->mods[card].fxs; if (debug & DEBUG_CARD) dev_info(&wc->vb.pdev->dev, "fxs_on_hook: Card %d Going on hook\n", card); wctdm_fxs_hooksig(wc, card, DAHDI_TXSIG_ONHOOK); dahdi_hooksig(wc->aspan->span.chans[card], DAHDI_RXSIG_ONHOOK); fxs->oldrxhook = 0; } static inline void wctdm_proslic_check_hook(struct wctdm *wc, const int card) { struct fxs *const fxs = &wc->mods[card].fxs; char res; int hook; /* For some reason we have to debounce the hook detector. */ res = wc->cmdq[card].isrshadow[0]; /* Hook state */ hook = (res & 1); if (hook != fxs->lastrxhook) { /* Reset the debounce (must be multiple of 4ms) */ fxs->debounce = 8 * (4 * 8); #if 0 dev_info(&wc->vb.pdev->dev, "Resetting debounce card %d hook %d, %d\n", card, hook, fxs->debounce); #endif } else { if (fxs->debounce > 0) { fxs->debounce -= 4 * DAHDI_CHUNKSIZE; #if 0 dev_info(&wc->vb.pdev->dev, "Sustaining hook %d, %d\n", hook, fxs->debounce); #endif if (!fxs->debounce) { #if 0 dev_info(&wc->vb.pdev->dev, "Counted down debounce, newhook: %d...\n", hook); #endif fxs->debouncehook = hook; } if (!fxs->oldrxhook && fxs->debouncehook) wctdm_fxs_off_hook(wc, card); else if (fxs->oldrxhook && !fxs->debouncehook) wctdm_fxs_on_hook(wc, card); } } fxs->lastrxhook = hook; } static inline void wctdm_vpm_check(struct wctdm *wc, int x) { if (wc->cmdq[x].isrshadow[0]) { if (debug & DEBUG_ECHOCAN) dev_info(&wc->vb.pdev->dev, "VPM: Detected dtmf ON channel %02x on chip %d!\n", wc->cmdq[x].isrshadow[0], x - NUM_MODULES); wc->sethook[x] = CMD_WR(0xb9, wc->cmdq[x].isrshadow[0]); wc->cmdq[x].isrshadow[0] = 0; /* Cancel most recent lookup, if there is one */ wc->cmdq[x].cmds[USER_COMMANDS+0] = 0x00000000; } else if (wc->cmdq[x].isrshadow[1]) { if (debug & DEBUG_ECHOCAN) dev_info(&wc->vb.pdev->dev, "VPM: Detected dtmf OFF channel %02x on chip %d!\n", wc->cmdq[x].isrshadow[1], x - NUM_MODULES); wc->sethook[x] = CMD_WR(0xbd, wc->cmdq[x].isrshadow[1]); wc->cmdq[x].isrshadow[1] = 0; /* Cancel most recent lookup, if there is one */ wc->cmdq[x].cmds[USER_COMMANDS+1] = 0x00000000; } } static int wctdm_echocan_create(struct dahdi_chan *chan, struct dahdi_echocanparams *ecp, struct dahdi_echocanparam *p, struct dahdi_echocan_state **ec) { struct wctdm *wc = chan->pvt; struct wctdm_chan *wchan = container_of(chan, struct wctdm_chan, chan); const struct dahdi_echocan_ops *ops; const struct dahdi_echocan_features *features; #ifdef VPM_SUPPORT if (!vpmsupport) return -ENODEV; #endif if (!wc->vpm100 && !wc->vpmadt032) return -ENODEV; if (wc->vpmadt032) { ops = &vpm150m_ec_ops; features = &vpm150m_ec_features; } else { ops = &vpm100m_ec_ops; features = &vpm100m_ec_features; } if (wc->vpm100 && (ecp->param_count > 0)) { dev_warn(&wc->vb.pdev->dev, "%s echo canceller does not " "support parameters; failing request\n", chan->ec_factory->name); return -EINVAL; } *ec = &wchan->ec; (*ec)->ops = ops; (*ec)->features = *features; if (wc->vpm100) { int channel; int unit; channel = wchan->timeslot; unit = wchan->timeslot & 0x3; if (wc->vpm100 < 2) channel >>= 2; if (debug & DEBUG_ECHOCAN) dev_info(&wc->vb.pdev->dev, "echocan: Unit is %d, Channel is %d length %d\n", unit, channel, ecp->tap_length); wctdm_vpm_out(wc, unit, channel, 0x3e); return 0; } else if (wc->vpmadt032) { enum adt_companding comp; comp = (DAHDI_LAW_ALAW == chan->span->deflaw) ? ADT_COMP_ALAW : ADT_COMP_ULAW; return vpmadt032_echocan_create(wc->vpmadt032, wchan->timeslot, comp, ecp, p); } else { return -ENODEV; } } static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec) { struct wctdm *wc = chan->pvt; struct wctdm_chan *wchan = container_of(chan, struct wctdm_chan, chan); memset(ec, 0, sizeof(*ec)); if (wc->vpm100) { int channel; int unit; channel = wchan->timeslot; unit = wchan->timeslot & 0x3; if (wc->vpm100 < 2) channel >>= 2; if (debug & DEBUG_ECHOCAN) dev_info(&wc->vb.pdev->dev, "echocan: Unit is %d, Channel is %d length 0\n", unit, channel); wctdm_vpm_out(wc, unit, channel, 0x01); } else if (wc->vpmadt032) { vpmadt032_echocan_free(wc->vpmadt032, wchan->timeslot, ec); } } /* 1ms interrupt */ static void wctdm_isr_misc_fxs(struct wctdm *wc, int card) { struct fxs *const fxs = &wc->mods[card].fxs; unsigned long flags; if (!(wc->intcount % 10000)) { /* Accept an alarm once per 10 seconds */ if (fxs->palarms) fxs->palarms--; } wctdm_proslic_check_hook(wc, card); wctdm_proslic_check_oppending(wc, card); if (!(wc->intcount & 0xfc)) /* every 256ms */ wctdm_proslic_recheck_sanity(wc, card); if (SLIC_LF_RINGING == fxs->lasttxhook) { /* RINGing, prepare for OHT */ fxs->ohttimer = OHT_TIMER << 3; /* OHT mode when idle */ fxs->idletxhookstate = POLARITY_XOR(card) ? SLIC_LF_OHTRAN_REV : SLIC_LF_OHTRAN_FWD; } else if (fxs->ohttimer) { /* check if still OnHook */ if (!fxs->oldrxhook) { fxs->ohttimer -= DAHDI_CHUNKSIZE; if (fxs->ohttimer) return; /* Switch to active */ fxs->idletxhookstate = POLARITY_XOR(card) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; spin_lock_irqsave(&fxs->lasttxhooklock, flags); if (SLIC_LF_OHTRAN_FWD == fxs->lasttxhook) { /* Apply the change if appropriate */ fxs->lasttxhook = SLIC_LF_OPPENDING | SLIC_LF_ACTIVE_FWD; /* Data enqueued here */ wc->sethook[card] = CMD_WR(LINE_STATE, fxs->lasttxhook); if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Channel %d OnHookTransfer " "stop\n", card); } } else if (SLIC_LF_OHTRAN_REV == fxs->lasttxhook) { /* Apply the change if appropriate */ fxs->lasttxhook = SLIC_LF_OPPENDING | SLIC_LF_ACTIVE_REV; /* Data enqueued here */ wc->sethook[card] = CMD_WR(LINE_STATE, fxs->lasttxhook); if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Channel %d OnHookTransfer " "stop\n", card); } } spin_unlock_irqrestore(&fxs->lasttxhooklock, flags); } else { fxs->ohttimer = 0; /* Switch to active */ fxs->idletxhookstate = POLARITY_XOR(card) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Channel %d OnHookTransfer abort\n", card); } } } } /* 1ms interrupt */ static inline void wctdm_isr_misc(struct wctdm *wc) { int x; if (unlikely(!wc->initialized)) { return; } for (x = 0; x < wc->mods_per_board; x++) { if (wc->modmap & (1 << x)) { if (wc->modtype[x] == MOD_TYPE_FXS) { wctdm_isr_misc_fxs(wc, x); } else if (wc->modtype[x] == MOD_TYPE_FXO) { wctdm_voicedaa_check_hook(wc, x); } else if (wc->modtype[x] == MOD_TYPE_QRV) { wctdm_qrvdri_check_hook(wc, x); } } } if (wc->vpm100 > 0) { for (x = NUM_MODULES; x < NUM_MODULES+NUM_EC; x++) wctdm_vpm_check(wc, x); } } static void handle_receive(struct voicebus *vb, struct list_head *buffers) { struct wctdm *wc = container_of(vb, struct wctdm, vb); struct vbb *vbb; list_for_each_entry(vbb, buffers, entry) wctdm_receiveprep(wc, vbb->data); } static void handle_transmit(struct voicebus *vb, struct list_head *buffers) { struct wctdm *wc = container_of(vb, struct wctdm, vb); struct vbb *vbb; list_for_each_entry(vbb, buffers, entry) { memset(vbb->data, 0, sizeof(vbb->data)); wctdm_transmitprep(wc, vbb->data); wctdm_isr_misc(wc); wc->intcount++; } } struct sframe_packet { struct list_head node; u8 sframe[SFRAME_SIZE]; }; /** * handle_hx8_bootmode_receive() - queue up the receive packet for later... * * This function is called from interrupt context and isn't optimal, but it's * not the main code path. */ static void handle_hx8_bootmode_receive(struct wctdm *wc, const void *vbb) { struct sframe_packet *frame; frame = kzalloc(sizeof(*frame), GFP_ATOMIC); if (unlikely(!frame)) { WARN_ON(1); return; } memcpy(frame->sframe, vbb, sizeof(frame->sframe)); spin_lock(&wc->frame_list_lock); list_add_tail(&frame->node, &wc->frame_list); spin_unlock(&wc->frame_list_lock); /* Wake up anyone waiting for a new packet. */ wake_up(&wc->regq); return; } static void handle_hx8_receive(struct voicebus *vb, struct list_head *buffers) { struct wctdm *wc = container_of(vb, struct wctdm, vb); struct vbb *vbb; list_for_each_entry(vbb, buffers, entry) handle_hx8_bootmode_receive(wc, vbb->data); } static void handle_hx8_transmit(struct voicebus *vb, struct list_head *buffers) { struct vbb *vbb, *n; list_for_each_entry_safe(vbb, n, buffers, entry) { list_del(&vbb->entry); dma_pool_free(vb->pool, vbb, vbb->dma_addr); } } static int wctdm_voicedaa_insane(struct wctdm *wc, int card) { int blah; blah = wctdm_getreg(wc, card, 2); if (blah != 0x3) return -2; blah = wctdm_getreg(wc, card, 11); if (debug & DEBUG_CARD) dev_info(&wc->vb.pdev->dev, "VoiceDAA System: %02x\n", blah & 0xf); return 0; } static int wctdm_proslic_insane(struct wctdm *wc, int card) { int blah, reg1, insane_report; insane_report=0; blah = wctdm_getreg(wc, card, 0); if (blah != 0xff && (debug & DEBUG_CARD)) dev_info(&wc->vb.pdev->dev, "ProSLIC on module %d, product %d, version %d\n", card, (blah & 0x30) >> 4, (blah & 0xf)); #if 0 if ((blah & 0x30) >> 4) { dev_info(&wc->vb.pdev->dev, "ProSLIC on module %d is not a 3210.\n", card); return -1; } #endif if (((blah & 0xf) == 0) || ((blah & 0xf) == 0xf)) { /* SLIC not loaded */ return -1; } /* let's be really sure this is an FXS before we continue */ reg1 = wctdm_getreg(wc, card, 1); if ((0x80 != (blah & 0xf0)) || ((0x88 != reg1) && (0x08 != reg1))) { if (debug & DEBUG_CARD) dev_info(&wc->vb.pdev->dev, "DEBUG: not FXS b/c reg0=%x or reg1 != 0x88 (%x).\n", blah, reg1); return -1; } if ((blah & 0xf) < 2) { dev_info(&wc->vb.pdev->dev, "ProSLIC 3210 version %d is too old\n", blah & 0xf); return -1; } if (wctdm_getreg(wc, card, 1) & 0x80) /* ProSLIC 3215, not a 3210 */ wc->flags[card] |= FLAG_3215; blah = wctdm_getreg(wc, card, 8); if (blah != 0x2) { dev_notice(&wc->vb.pdev->dev, "ProSLIC on module %d insane (1) %d should be 2\n", card, blah); return -1; } else if ( insane_report) dev_notice(&wc->vb.pdev->dev, "ProSLIC on module %d Reg 8 Reads %d Expected is 0x2\n",card,blah); blah = wctdm_getreg(wc, card, 64); if (blah != 0x0) { dev_notice(&wc->vb.pdev->dev, "ProSLIC on module %d insane (2)\n", card); return -1; } else if ( insane_report) dev_notice(&wc->vb.pdev->dev, "ProSLIC on module %d Reg 64 Reads %d Expected is 0x0\n",card,blah); blah = wctdm_getreg(wc, card, 11); if (blah != 0x33) { dev_notice(&wc->vb.pdev->dev, "ProSLIC on module %d insane (3)\n", card); return -1; } else if ( insane_report) dev_notice(&wc->vb.pdev->dev, "ProSLIC on module %d Reg 11 Reads %d Expected is 0x33\n",card,blah); /* Just be sure it's setup right. */ wctdm_setreg(wc, card, 30, 0); if (debug & DEBUG_CARD) dev_info(&wc->vb.pdev->dev, "ProSLIC on module %d seems sane.\n", card); return 0; } static int wctdm_proslic_powerleak_test(struct wctdm *wc, int card) { unsigned long origjiffies; unsigned char vbat; /* Turn off linefeed */ wctdm_setreg(wc, card, LINE_STATE, 0); /* Power down */ wctdm_setreg(wc, card, 14, 0x10); /* Wait for one second */ origjiffies = jiffies; while ((vbat = wctdm_getreg(wc, card, 82)) > 0x6) { if ((jiffies - origjiffies) >= (HZ/2)) break;; } if (vbat < 0x06) { dev_notice(&wc->vb.pdev->dev, "Excessive leakage detected on module %d: %d volts (%02x) after %d ms\n", card, 376 * vbat / 1000, vbat, (int)((jiffies - origjiffies) * 1000 / HZ)); return -1; } else if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Post-leakage voltage: %d volts\n", 376 * vbat / 1000); } return 0; } static int wctdm_powerup_proslic(struct wctdm *wc, int card, int fast) { unsigned char vbat; unsigned long origjiffies; int lim; /* Set period of DC-DC converter to 1/64 khz */ wctdm_setreg(wc, card, 92, 0xc0 /* was 0xff */); /* Wait for VBat to powerup */ origjiffies = jiffies; /* Disable powerdown */ wctdm_setreg(wc, card, 14, 0); /* If fast, don't bother checking anymore */ if (fast) return 0; while ((vbat = wctdm_getreg(wc, card, 82)) < 0xc0) { /* Wait no more than 500ms */ if ((jiffies - origjiffies) > HZ/2) { break; } } if (vbat < 0xc0) { dev_notice(&wc->vb.pdev->dev, "ProSLIC on module %d failed to powerup within %d ms (%d mV only)\n\n -- DID YOU REMEMBER TO PLUG IN THE HD POWER CABLE TO THE TDM CARD??\n", card, (int)(((jiffies - origjiffies) * 1000 / HZ)), vbat * 375); return -1; } else if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "ProSLIC on module %d powered up to -%d volts (%02x) in %d ms\n", card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ))); } /* Proslic max allowed loop current, reg 71 LOOP_I_LIMIT */ /* If out of range, just set it to the default value */ lim = (loopcurrent - 20) / 3; if ( loopcurrent > 41 ) { lim = 0; if (debug & DEBUG_CARD) dev_info(&wc->vb.pdev->dev, "Loop current out of range! Setting to default 20mA!\n"); } else if (debug & DEBUG_CARD) dev_info(&wc->vb.pdev->dev, "Loop current set to %dmA!\n",(lim*3)+20); wctdm_setreg(wc,card,LOOP_I_LIMIT,lim); /* Engage DC-DC converter */ wctdm_setreg(wc, card, 93, 0x19 /* was 0x19 */); return 0; } static int wctdm_proslic_manual_calibrate(struct wctdm *wc, int card) { unsigned long origjiffies; unsigned char i; wctdm_setreg(wc, card, 21, 0);//(0) Disable all interupts in DR21 wctdm_setreg(wc, card, 22, 0);//(0)Disable all interupts in DR21 wctdm_setreg(wc, card, 23, 0);//(0)Disable all interupts in DR21 wctdm_setreg(wc, card, 64, 0);//(0) wctdm_setreg(wc, card, 97, 0x18); //(0x18)Calibrations without the ADC and DAC offset and without common mode calibration. wctdm_setreg(wc, card, 96, 0x47); //(0x47) Calibrate common mode and differential DAC mode DAC + ILIM origjiffies=jiffies; while (wctdm_getreg(wc, card, 96) != 0) { if ((jiffies-origjiffies) > 80) return -1; } //Initialized DR 98 and 99 to get consistant results. // 98 and 99 are the results registers and the search should have same intial conditions. /*******************************The following is the manual gain mismatch calibration****************************/ /*******************************This is also available as a function *******************************************/ msleep(10); wctdm_proslic_setreg_indirect(wc, card, 88,0); wctdm_proslic_setreg_indirect(wc,card,89,0); wctdm_proslic_setreg_indirect(wc,card,90,0); wctdm_proslic_setreg_indirect(wc,card,91,0); wctdm_proslic_setreg_indirect(wc,card,92,0); wctdm_proslic_setreg_indirect(wc,card,93,0); wctdm_setreg(wc, card, 98,0x10); // This is necessary if the calibration occurs other than at reset time wctdm_setreg(wc, card, 99,0x10); for ( i=0x1f; i>0; i--) { wctdm_setreg(wc, card, 98,i); msleep(40); if ((wctdm_getreg(wc, card, 88)) == 0) break; } // for for ( i=0x1f; i>0; i--) { wctdm_setreg(wc, card, 99,i); msleep(40); if ((wctdm_getreg(wc, card, 89)) == 0) break; }//for /*******************************The preceding is the manual gain mismatch calibration****************************/ /**********************************The following is the longitudinal Balance Cal***********************************/ wctdm_setreg(wc,card,64,1); msleep(100); wctdm_setreg(wc, card, 64, 0); wctdm_setreg(wc, card, 23, 0x4); // enable interrupt for the balance Cal wctdm_setreg(wc, card, 97, 0x1); // this is a singular calibration bit for longitudinal calibration wctdm_setreg(wc, card, 96,0x40); wctdm_getreg(wc,card,96); /* Read Reg 96 just cause */ wctdm_setreg(wc, card, 21, 0xFF); wctdm_setreg(wc, card, 22, 0xFF); wctdm_setreg(wc, card, 23, 0xFF); /**The preceding is the longitudinal Balance Cal***/ return(0); } static int wctdm_proslic_calibrate(struct wctdm *wc, int card) { unsigned long origjiffies; int x; /* Perform all calibrations */ wctdm_setreg(wc, card, 97, 0x1f); /* Begin, no speedup */ wctdm_setreg(wc, card, 96, 0x5f); /* Wait for it to finish */ origjiffies = jiffies; while (wctdm_getreg(wc, card, 96)) { if (time_after(jiffies, (origjiffies + (2*HZ)))) { dev_notice(&wc->vb.pdev->dev, "Timeout waiting for calibration of module %d\n", card); return -1; } } if (debug & DEBUG_CARD) { /* Print calibration parameters */ dev_info(&wc->vb.pdev->dev, "Calibration Vector Regs 98 - 107: \n"); for (x=98;x<108;x++) { dev_info(&wc->vb.pdev->dev, "%d: %02x\n", x, wctdm_getreg(wc, card, x)); } } return 0; } /********************************************************************* * Set the hwgain on the analog modules * * card = the card position for this module (0-23) * gain = gain in dB x10 (e.g. -3.5dB would be gain=-35) * tx = (0 for rx; 1 for tx) * *******************************************************************/ static int wctdm_set_hwgain(struct wctdm *wc, int card, __s32 gain, __u32 tx) { if (!(wc->modtype[card] == MOD_TYPE_FXO)) { dev_notice(&wc->vb.pdev->dev, "Cannot adjust gain. Unsupported module type!\n"); return -1; } if (tx) { if (debug) dev_info(&wc->vb.pdev->dev, "setting FXO tx gain for card=%d to %d\n", card, gain); if (gain >= -150 && gain <= 0) { wctdm_setreg(wc, card, 38, 16 + (gain/-10)); wctdm_setreg(wc, card, 40, 16 + (-gain%10)); } else if (gain <= 120 && gain > 0) { wctdm_setreg(wc, card, 38, gain/10); wctdm_setreg(wc, card, 40, (gain%10)); } else { dev_notice(&wc->vb.pdev->dev, "FXO tx gain is out of range (%d)\n", gain); return -1; } } else { /* rx */ if (debug) dev_info(&wc->vb.pdev->dev, "setting FXO rx gain for card=%d to %d\n", card, gain); if (gain >= -150 && gain <= 0) { wctdm_setreg(wc, card, 39, 16+ (gain/-10)); wctdm_setreg(wc, card, 41, 16 + (-gain%10)); } else if (gain <= 120 && gain > 0) { wctdm_setreg(wc, card, 39, gain/10); wctdm_setreg(wc, card, 41, (gain%10)); } else { dev_notice(&wc->vb.pdev->dev, "FXO rx gain is out of range (%d)\n", gain); return -1; } } return 0; } static int set_lasttxhook_interruptible(struct fxs *fxs, unsigned newval, int * psethook) { int res = 0; unsigned long flags; int timeout = 0; do { spin_lock_irqsave(&fxs->lasttxhooklock, flags); if (SLIC_LF_OPPENDING & fxs->lasttxhook) { spin_unlock_irqrestore(&fxs->lasttxhooklock, flags); if (timeout++ > 100) return -1; msleep(1); } else { fxs->lasttxhook = (newval & SLIC_LF_SETMASK) | SLIC_LF_OPPENDING; *psethook = CMD_WR(LINE_STATE, fxs->lasttxhook); spin_unlock_irqrestore(&fxs->lasttxhooklock, flags); break; } } while (1); return res; } /* Must be called from within an interruptible context */ static int set_vmwi(struct wctdm *wc, int chan_idx) { int x; struct fxs *const fxs = &wc->mods[chan_idx].fxs; /* Presently only supports line reversal MWI */ if ((fxs->vmwi_active_messages) && (fxs->vmwisetting.vmwi_type & DAHDI_VMWI_LREV)) fxs->vmwi_linereverse = 1; else fxs->vmwi_linereverse = 0; /* Set line polarity for new VMWI state */ if (POLARITY_XOR(chan_idx)) { fxs->idletxhookstate |= SLIC_LF_OPPENDING | SLIC_LF_REVMASK; /* Do not set while currently ringing or open */ if (((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_RINGING) && ((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)) { x = fxs->lasttxhook; x |= SLIC_LF_REVMASK; set_lasttxhook_interruptible(fxs, x, &wc->sethook[chan_idx]); } } else { fxs->idletxhookstate &= ~SLIC_LF_REVMASK; /* Do not set while currently ringing or open */ if (((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_RINGING) && ((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)) { x = fxs->lasttxhook; x &= ~SLIC_LF_REVMASK; set_lasttxhook_interruptible(fxs, x, &wc->sethook[chan_idx]); } } if (debug) { dev_info(&wc->vb.pdev->dev, "Setting VMWI on channel %d, messages=%d, lrev=%d\n", chan_idx, fxs->vmwi_active_messages, fxs->vmwi_linereverse); } return 0; } static void wctdm_voicedaa_set_ts(struct wctdm *wc, int card, int ts) { wctdm_setreg(wc, card, 34, (ts * 8) & 0xff); wctdm_setreg(wc, card, 35, (ts * 8) >> 8); wctdm_setreg(wc, card, 36, (ts * 8) & 0xff); wctdm_setreg(wc, card, 37, (ts * 8) >> 8); if (debug) dev_info(&wc->vb.pdev->dev, "voicedaa: card %d new timeslot: %d\n", card + 1, ts); } static int wctdm_init_voicedaa(struct wctdm *wc, int card, int fast, int manual, int sane) { unsigned char reg16=0, reg26=0, reg30=0, reg31=0; unsigned long flags; long newjiffies; if ((wc->modtype[card & 0xfc] == MOD_TYPE_QRV) || (wc->modtype[card & 0xfc] == MOD_TYPE_BRI)) return -2; spin_lock_irqsave(&wc->reglock, flags); wc->modtype[card] = MOD_TYPE_NONE; spin_unlock_irqrestore(&wc->reglock, flags); msleep(100); spin_lock_irqsave(&wc->reglock, flags); wc->modtype[card] = MOD_TYPE_FXO; spin_unlock_irqrestore(&wc->reglock, flags); msleep(100); if (!sane && wctdm_voicedaa_insane(wc, card)) return -2; /* Software reset */ wctdm_setreg(wc, card, 1, 0x80); msleep(100); /* Set On-hook speed, Ringer impedence, and ringer threshold */ reg16 |= (fxo_modes[_opermode].ohs << 6); reg16 |= (fxo_modes[_opermode].rz << 1); reg16 |= (fxo_modes[_opermode].rt); wctdm_setreg(wc, card, 16, reg16); /* Enable ring detector full-wave rectifier mode */ wctdm_setreg(wc, card, 18, 2); wctdm_setreg(wc, card, 24, 0); /* Set DC Termination: Tip/Ring voltage adjust, minimum operational current, current limitation */ reg26 |= (fxo_modes[_opermode].dcv << 6); reg26 |= (fxo_modes[_opermode].mini << 4); reg26 |= (fxo_modes[_opermode].ilim << 1); wctdm_setreg(wc, card, 26, reg26); /* Set AC Impedence */ reg30 = (fxo_modes[_opermode].acim); wctdm_setreg(wc, card, 30, reg30); /* Misc. DAA parameters */ reg31 = 0xa3; reg31 |= (fxo_modes[_opermode].ohs2 << 3); wctdm_setreg(wc, card, 31, reg31); wctdm_voicedaa_set_ts(wc, card, card); /* Enable ISO-Cap */ wctdm_setreg(wc, card, 6, 0x00); /* Wait 1000ms for ISO-cap to come up */ newjiffies = jiffies; newjiffies += 2 * HZ; while ((jiffies < newjiffies) && !(wctdm_getreg(wc, card, 11) & 0xf0)) msleep(100); if (!(wctdm_getreg(wc, card, 11) & 0xf0)) { dev_notice(&wc->vb.pdev->dev, "VoiceDAA did not bring up ISO link properly!\n"); return -1; } if (debug & DEBUG_CARD) dev_info(&wc->vb.pdev->dev, "ISO-Cap is now up, line side: %02x rev %02x\n", wctdm_getreg(wc, card, 11) >> 4, (wctdm_getreg(wc, card, 13) >> 2) & 0xf); /* Enable on-hook line monitor */ wctdm_setreg(wc, card, 5, 0x08); /* Take values for fxotxgain and fxorxgain and apply them to module */ wctdm_set_hwgain(wc, card, fxotxgain, 1); wctdm_set_hwgain(wc, card, fxorxgain, 0); #ifdef DEBUG if (digitalloopback) { dev_info(&wc->vb.pdev->dev, "Turning on digital loopback for port %d.\n", card + 1); wctdm_setreg(wc, card, 10, 0x01); } #endif if (debug) dev_info(&wc->vb.pdev->dev, "DEBUG fxotxgain:%i.%i fxorxgain:%i.%i\n", (wctdm_getreg(wc, card, 38)/16) ? -(wctdm_getreg(wc, card, 38) - 16) : wctdm_getreg(wc, card, 38), (wctdm_getreg(wc, card, 40)/16) ? -(wctdm_getreg(wc, card, 40) - 16) : wctdm_getreg(wc, card, 40), (wctdm_getreg(wc, card, 39)/16) ? -(wctdm_getreg(wc, card, 39) - 16): wctdm_getreg(wc, card, 39), (wctdm_getreg(wc, card, 41)/16)?-(wctdm_getreg(wc, card, 41) - 16) : wctdm_getreg(wc, card, 41)); return 0; } static void wctdm_proslic_set_ts(struct wctdm *wc, int card, int ts) { wctdm_setreg(wc, card, 2, (ts * 8) & 0xff); /* Tx Start count low byte 0 */ wctdm_setreg(wc, card, 3, (ts * 8) >> 8); /* Tx Start count high byte 0 */ wctdm_setreg(wc, card, 4, (ts * 8) & 0xff); /* Rx Start count low byte 0 */ wctdm_setreg(wc, card, 5, (ts * 8) >> 8); /* Rx Start count high byte 0 */ if (debug) dev_info(&wc->vb.pdev->dev, "proslic: card %d new timeslot: %d\n", card + 1, ts); } static int wctdm_init_proslic(struct wctdm *wc, int card, int fast, int manual, int sane) { unsigned short tmp[5]; unsigned long flags; unsigned char r19,r9; int x; int fxsmode=0; if (wc->modtype[card & 0xfc] == MOD_TYPE_QRV) return -2; spin_lock_irqsave(&wc->reglock, flags); wc->modtype[card] = MOD_TYPE_FXS; spin_unlock_irqrestore(&wc->reglock, flags); msleep(100); /* Sanity check the ProSLIC */ if (!sane && wctdm_proslic_insane(wc, card)) return -2; /* Initialize VMWI settings */ memset(&(wc->mods[card].fxs.vmwisetting), 0, sizeof(wc->mods[card].fxs.vmwisetting)); wc->mods[card].fxs.vmwi_linereverse = 0; /* By default, don't send on hook */ if (!reversepolarity != !wc->mods[card].fxs.reversepolarity) { wc->mods[card].fxs.idletxhookstate = SLIC_LF_ACTIVE_REV; } else { wc->mods[card].fxs.idletxhookstate = SLIC_LF_ACTIVE_FWD; } if (sane) { /* Make sure we turn off the DC->DC converter to prevent anything from blowing up */ wctdm_setreg(wc, card, 14, 0x10); } if (wctdm_proslic_init_indirect_regs(wc, card)) { dev_info(&wc->vb.pdev->dev, "Indirect Registers failed to initialize on module %d.\n", card); return -1; } /* Clear scratch pad area */ wctdm_proslic_setreg_indirect(wc, card, 97,0); /* Clear digital loopback */ wctdm_setreg(wc, card, 8, 0); /* Revision C optimization */ wctdm_setreg(wc, card, 108, 0xeb); /* Disable automatic VBat switching for safety to prevent Q7 from accidently turning on and burning out. */ wctdm_setreg(wc, card, 67, 0x07); /* If pulse dialing has trouble at high REN loads change this to 0x17 */ /* Turn off Q7 */ wctdm_setreg(wc, card, 66, 1); /* Flush ProSLIC digital filters by setting to clear, while saving old values */ for (x=0;x<5;x++) { tmp[x] = wctdm_proslic_getreg_indirect(wc, card, x + 35); wctdm_proslic_setreg_indirect(wc, card, x + 35, 0x8000); } /* Power up the DC-DC converter */ if (wctdm_powerup_proslic(wc, card, fast)) { dev_notice(&wc->vb.pdev->dev, "Unable to do INITIAL ProSLIC powerup on module %d\n", card); return -1; } if (!fast) { spin_lock_init(&wc->mods[card].fxs.lasttxhooklock); /* Check for power leaks */ if (wctdm_proslic_powerleak_test(wc, card)) { dev_notice(&wc->vb.pdev->dev, "ProSLIC module %d failed leakage test. Check for short circuit\n", card); } /* Power up again */ if (wctdm_powerup_proslic(wc, card, fast)) { dev_notice(&wc->vb.pdev->dev, "Unable to do FINAL ProSLIC powerup on module %d\n", card); return -1; } #ifndef NO_CALIBRATION /* Perform calibration */ if (manual) { if (wctdm_proslic_manual_calibrate(wc, card)) { //dev_notice(&wc->vb.pdev->dev, "Proslic failed on Manual Calibration\n"); if (wctdm_proslic_manual_calibrate(wc, card)) { dev_notice(&wc->vb.pdev->dev, "Proslic Failed on Second Attempt to Calibrate Manually. (Try -DNO_CALIBRATION in Makefile)\n"); return -1; } dev_info(&wc->vb.pdev->dev, "Proslic Passed Manual Calibration on Second Attempt\n"); } } else { if (wctdm_proslic_calibrate(wc, card)) { //dev_notice(&wc->vb.pdev->dev, "ProSlic died on Auto Calibration.\n"); if (wctdm_proslic_calibrate(wc, card)) { dev_notice(&wc->vb.pdev->dev, "Proslic Failed on Second Attempt to Auto Calibrate\n"); return -1; } dev_info(&wc->vb.pdev->dev, "Proslic Passed Auto Calibration on Second Attempt\n"); } } /* Perform DC-DC calibration */ wctdm_setreg(wc, card, 93, 0x99); r19 = wctdm_getreg(wc, card, 107); if ((r19 < 0x2) || (r19 > 0xd)) { dev_notice(&wc->vb.pdev->dev, "DC-DC cal has a surprising direct 107 of 0x%02x!\n", r19); wctdm_setreg(wc, card, 107, 0x8); } /* Save calibration vectors */ for (x=0;xmods[card].fxs.calregs.vals[x] = wctdm_getreg(wc, card, 96 + x); #endif } else { /* Restore calibration registers */ for (x=0;xmods[card].fxs.calregs.vals[x]); } /* Calibration complete, restore original values */ for (x=0;x<5;x++) { wctdm_proslic_setreg_indirect(wc, card, x + 35, tmp[x]); } if (wctdm_proslic_verify_indirect_regs(wc, card)) { dev_info(&wc->vb.pdev->dev, "Indirect Registers failed verification.\n"); return -1; } #if 0 /* Disable Auto Power Alarm Detect and other "features" */ wctdm_setreg(wc, card, 67, 0x0e); blah = wctdm_getreg(wc, card, 67); #endif #if 0 if (wctdm_proslic_setreg_indirect(wc, card, 97, 0x0)) { // Stanley: for the bad recording fix dev_info(&wc->vb.pdev->dev, "ProSlic IndirectReg Died.\n"); return -1; } #endif /* U-Law 8-bit interface */ wctdm_proslic_set_ts(wc, card, card); wctdm_setreg(wc, card, 18, 0xff); // clear all interrupt wctdm_setreg(wc, card, 19, 0xff); wctdm_setreg(wc, card, 20, 0xff); wctdm_setreg(wc, card, 22, 0xff); wctdm_setreg(wc, card, 73, 0x04); if (fxshonormode) { static const int ACIM2TISS[16] = { 0x0, 0x1, 0x4, 0x5, 0x7, 0x0, 0x0, 0x6, 0x0, 0x0, 0x0, 0x2, 0x0, 0x3 }; fxsmode = ACIM2TISS[fxo_modes[_opermode].acim]; wctdm_setreg(wc, card, 10, 0x08 | fxsmode); if (fxo_modes[_opermode].ring_osc) wctdm_proslic_setreg_indirect(wc, card, 20, fxo_modes[_opermode].ring_osc); if (fxo_modes[_opermode].ring_x) wctdm_proslic_setreg_indirect(wc, card, 21, fxo_modes[_opermode].ring_x); } if (lowpower) wctdm_setreg(wc, card, 72, 0x10); #if 0 wctdm_setreg(wc, card, 21, 0x00); // enable interrupt wctdm_setreg(wc, card, 22, 0x02); // Loop detection interrupt wctdm_setreg(wc, card, 23, 0x01); // DTMF detection interrupt #endif #if 0 /* Enable loopback */ wctdm_setreg(wc, card, 8, 0x2); wctdm_setreg(wc, card, 14, 0x0); wctdm_setreg(wc, card, 64, 0x0); wctdm_setreg(wc, card, 1, 0x08); #endif if (fastringer) { /* Speed up Ringer */ wctdm_proslic_setreg_indirect(wc, card, 20, 0x7e6d); wctdm_proslic_setreg_indirect(wc, card, 21, 0x01b9); /* Beef up Ringing voltage to 89V */ if (boostringer) { wctdm_setreg(wc, card, 74, 0x3f); if (wctdm_proslic_setreg_indirect(wc, card, 21, 0x247)) return -1; dev_info(&wc->vb.pdev->dev, "Boosting fast ringer on slot %d (89V peak)\n", card + 1); } else if (lowpower) { if (wctdm_proslic_setreg_indirect(wc, card, 21, 0x14b)) return -1; dev_info(&wc->vb.pdev->dev, "Reducing fast ring power on slot %d (50V peak)\n", card + 1); } else dev_info(&wc->vb.pdev->dev, "Speeding up ringer on slot %d (25Hz)\n", card + 1); } else { /* Beef up Ringing voltage to 89V */ if (boostringer) { wctdm_setreg(wc, card, 74, 0x3f); if (wctdm_proslic_setreg_indirect(wc, card, 21, 0x1d1)) return -1; dev_info(&wc->vb.pdev->dev, "Boosting ringer on slot %d (89V peak)\n", card + 1); } else if (lowpower) { if (wctdm_proslic_setreg_indirect(wc, card, 21, 0x108)) return -1; dev_info(&wc->vb.pdev->dev, "Reducing ring power on slot %d (50V peak)\n", card + 1); } } if (fxstxgain || fxsrxgain) { r9 = wctdm_getreg(wc, card, 9); switch (fxstxgain) { case 35: r9+=8; break; case -35: r9+=4; break; case 0: break; } switch (fxsrxgain) { case 35: r9+=2; break; case -35: r9+=1; break; case 0: break; } wctdm_setreg(wc, card, 9, r9); } if (debug) dev_info(&wc->vb.pdev->dev, "DEBUG: fxstxgain:%s fxsrxgain:%s\n",((wctdm_getreg(wc, card, 9)/8) == 1)?"3.5":(((wctdm_getreg(wc,card,9)/4) == 1)?"-3.5":"0.0"),((wctdm_getreg(wc, card, 9)/2) == 1)?"3.5":((wctdm_getreg(wc,card,9)%2)?"-3.5":"0.0")); wc->mods[card].fxs.lasttxhook = wc->mods[card].fxs.idletxhookstate; wctdm_setreg(wc, card, LINE_STATE, wc->mods[card].fxs.lasttxhook); return 0; } static void wctdm_qrvdri_set_ts(struct wctdm *wc, int card, int ts) { wctdm_setreg(wc, card, 0x13, ts + 0x80); /* codec 2 tx, ts0 */ wctdm_setreg(wc, card, 0x17, ts + 0x80); /* codec 0 rx, ts0 */ wctdm_setreg(wc, card, 0x14, ts + 0x81); /* codec 1 tx, ts1 */ wctdm_setreg(wc, card, 0x18, ts + 0x81); /* codec 1 rx, ts1 */ if (debug) dev_info(&wc->vb.pdev->dev, "qrvdri: card %d new timeslot: %d\n", card + 1, ts); } static int wctdm_init_qrvdri(struct wctdm *wc, int card) { unsigned char x,y; if (MOD_TYPE_BRI == wc->modtype[card & 0xfc]) return -2; /* have to set this, at least for now */ wc->modtype[card] = MOD_TYPE_QRV; if (!(card & 3)) /* if at base of card, reset and write it */ { wctdm_setreg(wc,card,0,0x80); wctdm_setreg(wc,card,0,0x55); wctdm_setreg(wc,card,1,0x69); wc->qrvhook[card] = wc->qrvhook[card + 1] = 0; wc->qrvhook[card + 2] = wc->qrvhook[card + 3] = 0xff; wc->debouncetime[card] = wc->debouncetime[card + 1] = QRV_DEBOUNCETIME; wc->qrvdebtime[card] = wc->qrvdebtime[card + 1] = 0; wc->radmode[card] = wc->radmode[card + 1] = 0; wc->txgain[card] = wc->txgain[card + 1] = 3599; wc->rxgain[card] = wc->rxgain[card + 1] = 1199; } else { /* channel is on same card as base, no need to test */ if (wc->modtype[card & 0x7c] == MOD_TYPE_QRV) { /* only lower 2 are valid */ if (!(card & 2)) return 0; } wc->modtype[card] = MOD_TYPE_NONE; return 1; } x = wctdm_getreg(wc,card,0); y = wctdm_getreg(wc,card,1); /* if not a QRV card, return as such */ if ((x != 0x55) || (y != 0x69)) { wc->modtype[card] = MOD_TYPE_NONE; return 1; } for (x = 0; x < 0x30; x++) { if ((x >= 0x1c) && (x <= 0x1e)) wctdm_setreg(wc,card,x,0xff); else wctdm_setreg(wc,card,x,0); } wctdm_setreg(wc,card,0,0x80); msleep(100); wctdm_setreg(wc,card,0,0x10); wctdm_setreg(wc,card,0,0x10); msleep(100); /* set up modes */ wctdm_setreg(wc,card,0,0x1c); /* set up I/O directions */ wctdm_setreg(wc,card,1,0x33); wctdm_setreg(wc,card,2,0x0f); wctdm_setreg(wc,card,5,0x0f); /* set up I/O to quiescent state */ wctdm_setreg(wc,card,3,0x11); /* D0-7 */ wctdm_setreg(wc,card,4,0xa); /* D8-11 */ wctdm_setreg(wc,card,7,0); /* CS outputs */ wctdm_qrvdri_set_ts(wc, card, card); /* set up for max gains */ wctdm_setreg(wc,card,0x26,0x24); wctdm_setreg(wc,card,0x27,0x24); wctdm_setreg(wc,card,0x0b,0x01); /* "Transmit" gain codec 0 */ wctdm_setreg(wc,card,0x0c,0x01); /* "Transmit" gain codec 1 */ wctdm_setreg(wc,card,0x0f,0xff); /* "Receive" gain codec 0 */ wctdm_setreg(wc,card,0x10,0xff); /* "Receive" gain codec 1 */ return 0; } static void qrv_dosetup(struct dahdi_chan *chan,struct wctdm *wc) { int qrvcard; unsigned char r; long l; /* actually do something with the values */ qrvcard = (chan->chanpos - 1) & 0xfc; if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ radmodes: %d,%d rxgains: %d,%d txgains: %d,%d\n", wc->radmode[qrvcard],wc->radmode[qrvcard + 1], wc->rxgain[qrvcard],wc->rxgain[qrvcard + 1], wc->txgain[qrvcard],wc->txgain[qrvcard + 1]); r = 0; if (wc->radmode[qrvcard] & RADMODE_DEEMP) r |= 4; if (wc->radmode[qrvcard + 1] & RADMODE_DEEMP) r |= 8; if (wc->rxgain[qrvcard] < 1200) r |= 1; if (wc->rxgain[qrvcard + 1] < 1200) r |= 2; wctdm_setreg(wc, qrvcard, 7, r); if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 7 to %02x hex\n",r); r = 0; if (wc->radmode[qrvcard] & RADMODE_PREEMP) r |= 3; else if (wc->txgain[qrvcard] >= 3600) r |= 1; else if (wc->txgain[qrvcard] >= 1200) r |= 2; if (wc->radmode[qrvcard + 1] & RADMODE_PREEMP) r |= 0xc; else if (wc->txgain[qrvcard + 1] >= 3600) r |= 4; else if (wc->txgain[qrvcard + 1] >= 1200) r |= 8; wctdm_setreg(wc, qrvcard, 4, r); if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 4 to %02x hex\n",r); r = 0; if (wc->rxgain[qrvcard] >= 2400) r |= 1; if (wc->rxgain[qrvcard + 1] >= 2400) r |= 2; wctdm_setreg(wc, qrvcard, 0x25, r); if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x25 to %02x hex\n",r); r = 0; if (wc->txgain[qrvcard] < 2400) r |= 1; else r |= 4; if (wc->txgain[qrvcard + 1] < 2400) r |= 8; else r |= 0x20; wctdm_setreg(wc, qrvcard, 0x26, r); if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x26 to %02x hex\n",r); l = ((long)(wc->rxgain[qrvcard] % 1200) * 10000) / 46875; if (l == 0) l = 1; if (wc->rxgain[qrvcard] >= 2400) l += 181; wctdm_setreg(wc, qrvcard, 0x0b, (unsigned char)l); if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x0b to %02x hex\n",(unsigned char)l); l = ((long)(wc->rxgain[qrvcard + 1] % 1200) * 10000) / 46875; if (l == 0) l = 1; if (wc->rxgain[qrvcard + 1] >= 2400) l += 181; wctdm_setreg(wc, qrvcard, 0x0c, (unsigned char)l); if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x0c to %02x hex\n",(unsigned char)l); l = ((long)(wc->txgain[qrvcard] % 1200) * 10000) / 46875; if (l == 0) l = 1; wctdm_setreg(wc, qrvcard, 0x0f, (unsigned char)l); if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x0f to %02x hex\n", (unsigned char)l); l = ((long)(wc->txgain[qrvcard + 1] % 1200) * 10000) / 46875; if (l == 0) l = 1; wctdm_setreg(wc, qrvcard, 0x10,(unsigned char)l); if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x10 to %02x hex\n",(unsigned char)l); return; } static int wctdm_ioctl(struct dahdi_chan *chan, unsigned int cmd, unsigned long data) { struct wctdm_stats stats; struct wctdm_regs regs; struct wctdm_regop regop; struct wctdm_echo_coefs echoregs; struct dahdi_hwgain hwgain; struct wctdm *wc = chan->pvt; int x; union { struct dahdi_radio_stat s; struct dahdi_radio_param p; } stack; struct fxs *const fxs = &wc->mods[chan->chanpos - 1].fxs; switch (cmd) { case DAHDI_ONHOOKTRANSFER: if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) return -EINVAL; if (get_user(x, (__user int *) data)) return -EFAULT; fxs->ohttimer = x << 3; /* Active mode when idle */ fxs->idletxhookstate = POLARITY_XOR(chan->chanpos - 1) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; if (((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_ACTIVE_FWD) || ((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_ACTIVE_REV)) { x = set_lasttxhook_interruptible(fxs, (POLARITY_XOR(chan->chanpos - 1) ? SLIC_LF_OHTRAN_REV : SLIC_LF_OHTRAN_FWD), &wc->sethook[chan->chanpos - 1]); if (debug & DEBUG_CARD) { if (x) { dev_info(&wc->vb.pdev->dev, "Channel %d TIMEOUT: " "OnHookTransfer start\n", chan->chanpos - 1); } else { dev_info(&wc->vb.pdev->dev, "Channel %d OnHookTransfer " "start\n", chan->chanpos - 1); } } } break; case DAHDI_VMWI_CONFIG: if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) return -EINVAL; if (copy_from_user(&(fxs->vmwisetting), (__user void *)data, sizeof(fxs->vmwisetting))) return -EFAULT; set_vmwi(wc, chan->chanpos - 1); break; case DAHDI_VMWI: if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) return -EINVAL; if (get_user(x, (__user int *) data)) return -EFAULT; if (0 > x) return -EFAULT; fxs->vmwi_active_messages = x; set_vmwi(wc, chan->chanpos - 1); break; case WCTDM_GET_STATS: if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) { stats.tipvolt = wctdm_getreg(wc, chan->chanpos - 1, 80) * -376; stats.ringvolt = wctdm_getreg(wc, chan->chanpos - 1, 81) * -376; stats.batvolt = wctdm_getreg(wc, chan->chanpos - 1, 82) * -376; } else if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) { stats.tipvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000; stats.ringvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000; stats.batvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000; } else return -EINVAL; if (copy_to_user((__user void *) data, &stats, sizeof(stats))) return -EFAULT; break; case WCTDM_GET_REGS: if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) { for (x=0;xchanpos -1, x); for (x=0;xchanpos - 1, x); } else if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_QRV) { memset(®s, 0, sizeof(regs)); for (x=0;x<0x32;x++) regs.direct[x] = wctdm_getreg(wc, chan->chanpos - 1, x); } else { memset(®s, 0, sizeof(regs)); for (x=0;xchanpos - 1, x); } if (copy_to_user((__user void *)data, ®s, sizeof(regs))) return -EFAULT; break; case WCTDM_SET_REG: if (copy_from_user(®op, (__user void *) data, sizeof(regop))) return -EFAULT; if (regop.indirect) { if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) return -EINVAL; dev_info(&wc->vb.pdev->dev, "Setting indirect %d to 0x%04x on %d\n", regop.reg, regop.val, chan->chanpos); wctdm_proslic_setreg_indirect(wc, chan->chanpos - 1, regop.reg, regop.val); } else { regop.val &= 0xff; if (regop.reg == LINE_STATE) { /* Set feedback register to indicate the new state that is being set */ fxs->lasttxhook = (regop.val & 0x0f) | SLIC_LF_OPPENDING; } dev_info(&wc->vb.pdev->dev, "Setting direct %d to %04x on %d\n", regop.reg, regop.val, chan->chanpos); wctdm_setreg(wc, chan->chanpos - 1, regop.reg, regop.val); } break; case WCTDM_SET_ECHOTUNE: dev_info(&wc->vb.pdev->dev, "-- Setting echo registers: \n"); if (copy_from_user(&echoregs, (__user void *) data, sizeof(echoregs))) return -EFAULT; if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) { /* Set the ACIM register */ wctdm_setreg(wc, chan->chanpos - 1, 30, echoregs.acim); /* Set the digital echo canceller registers */ wctdm_setreg(wc, chan->chanpos - 1, 45, echoregs.coef1); wctdm_setreg(wc, chan->chanpos - 1, 46, echoregs.coef2); wctdm_setreg(wc, chan->chanpos - 1, 47, echoregs.coef3); wctdm_setreg(wc, chan->chanpos - 1, 48, echoregs.coef4); wctdm_setreg(wc, chan->chanpos - 1, 49, echoregs.coef5); wctdm_setreg(wc, chan->chanpos - 1, 50, echoregs.coef6); wctdm_setreg(wc, chan->chanpos - 1, 51, echoregs.coef7); wctdm_setreg(wc, chan->chanpos - 1, 52, echoregs.coef8); dev_info(&wc->vb.pdev->dev, "-- Set echo registers successfully\n"); break; } else { return -EINVAL; } break; case DAHDI_SET_HWGAIN: if (copy_from_user(&hwgain, (__user void *) data, sizeof(hwgain))) return -EFAULT; wctdm_set_hwgain(wc, chan->chanpos-1, hwgain.newgain, hwgain.tx); if (debug) dev_info(&wc->vb.pdev->dev, "Setting hwgain on channel %d to %d for %s direction\n", chan->chanpos-1, hwgain.newgain, hwgain.tx ? "tx" : "rx"); break; #ifdef VPM_SUPPORT case DAHDI_TONEDETECT: /* Hardware DTMF detection is not supported. */ return -ENOSYS; #endif case DAHDI_SETPOLARITY: if (get_user(x, (__user int *) data)) return -EFAULT; if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS) return -EINVAL; /* Can't change polarity while ringing or when open */ if (((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_RINGING) || ((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_OPEN)) { if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Channel %d Unable to Set Polarity\n", chan->chanpos - 1); } return -EINVAL; } fxs->reversepolarity = (x) ? 1 : 0; if (POLARITY_XOR(chan->chanpos - 1)) { fxs->idletxhookstate |= SLIC_LF_REVMASK; x = fxs->lasttxhook & SLIC_LF_SETMASK; x |= SLIC_LF_REVMASK; if (x != fxs->lasttxhook) { x = set_lasttxhook_interruptible(fxs, x, &wc->sethook[chan->chanpos - 1]); if ((debug & DEBUG_CARD) && x) { dev_info(&wc->vb.pdev->dev, "Channel %d TIMEOUT: Set Reverse " "Polarity\n", chan->chanpos - 1); } else if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Channel %d Set Reverse Polarity\n", chan->chanpos - 1); } } } else { fxs->idletxhookstate &= ~SLIC_LF_REVMASK; x = fxs->lasttxhook & SLIC_LF_SETMASK; x &= ~SLIC_LF_REVMASK; if (x != fxs->lasttxhook) { x = set_lasttxhook_interruptible(fxs, x, &wc->sethook[chan->chanpos - 1]); if ((debug & DEBUG_CARD) & x) { dev_info(&wc->vb.pdev->dev, "Channel %d TIMEOUT: Set Normal " "Polarity\n", chan->chanpos - 1); } else if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Channel %d Set Normal Polarity\n", chan->chanpos - 1); } } } break; case DAHDI_RADIO_GETPARAM: if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_QRV) return -ENOTTY; if (copy_from_user(&stack.p, (__user void *) data, sizeof(stack.p))) return -EFAULT; stack.p.data = 0; /* start with 0 value in output */ switch(stack.p.radpar) { case DAHDI_RADPAR_INVERTCOR: if (wc->radmode[chan->chanpos - 1] & RADMODE_INVERTCOR) stack.p.data = 1; break; case DAHDI_RADPAR_IGNORECOR: if (wc->radmode[chan->chanpos - 1] & RADMODE_IGNORECOR) stack.p.data = 1; break; case DAHDI_RADPAR_IGNORECT: if (wc->radmode[chan->chanpos - 1] & RADMODE_IGNORECT) stack.p.data = 1; break; case DAHDI_RADPAR_EXTRXTONE: stack.p.data = 0; if (wc->radmode[chan->chanpos - 1] & RADMODE_EXTTONE) { stack.p.data = 1; if (wc->radmode[chan->chanpos - 1] & RADMODE_EXTINVERT) { stack.p.data = 2; } } break; case DAHDI_RADPAR_DEBOUNCETIME: stack.p.data = wc->debouncetime[chan->chanpos - 1]; break; case DAHDI_RADPAR_RXGAIN: stack.p.data = wc->rxgain[chan->chanpos - 1] - 1199; break; case DAHDI_RADPAR_TXGAIN: stack.p.data = wc->txgain[chan->chanpos - 1] - 3599; break; case DAHDI_RADPAR_DEEMP: stack.p.data = 0; if (wc->radmode[chan->chanpos - 1] & RADMODE_DEEMP) { stack.p.data = 1; } break; case DAHDI_RADPAR_PREEMP: stack.p.data = 0; if (wc->radmode[chan->chanpos - 1] & RADMODE_PREEMP) { stack.p.data = 1; } break; default: return -EINVAL; } if (copy_to_user((__user void *) data, &stack.p, sizeof(stack.p))) return -EFAULT; break; case DAHDI_RADIO_SETPARAM: if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_QRV) return -ENOTTY; if (copy_from_user(&stack.p, (__user void *) data, sizeof(stack.p))) return -EFAULT; switch(stack.p.radpar) { case DAHDI_RADPAR_INVERTCOR: if (stack.p.data) wc->radmode[chan->chanpos - 1] |= RADMODE_INVERTCOR; else wc->radmode[chan->chanpos - 1] &= ~RADMODE_INVERTCOR; return 0; case DAHDI_RADPAR_IGNORECOR: if (stack.p.data) wc->radmode[chan->chanpos - 1] |= RADMODE_IGNORECOR; else wc->radmode[chan->chanpos - 1] &= ~RADMODE_IGNORECOR; return 0; case DAHDI_RADPAR_IGNORECT: if (stack.p.data) wc->radmode[chan->chanpos - 1] |= RADMODE_IGNORECT; else wc->radmode[chan->chanpos - 1] &= ~RADMODE_IGNORECT; return 0; case DAHDI_RADPAR_EXTRXTONE: if (stack.p.data) wc->radmode[chan->chanpos - 1] |= RADMODE_EXTTONE; else wc->radmode[chan->chanpos - 1] &= ~RADMODE_EXTTONE; if (stack.p.data > 1) wc->radmode[chan->chanpos - 1] |= RADMODE_EXTINVERT; else wc->radmode[chan->chanpos - 1] &= ~RADMODE_EXTINVERT; return 0; case DAHDI_RADPAR_DEBOUNCETIME: wc->debouncetime[chan->chanpos - 1] = stack.p.data; return 0; case DAHDI_RADPAR_RXGAIN: /* if out of range */ if ((stack.p.data <= -1200) || (stack.p.data > 1552)) { return -EINVAL; } wc->rxgain[chan->chanpos - 1] = stack.p.data + 1199; break; case DAHDI_RADPAR_TXGAIN: /* if out of range */ if (wc->radmode[chan->chanpos -1] & RADMODE_PREEMP) { if ((stack.p.data <= -2400) || (stack.p.data > 0)) { return -EINVAL; } } else { if ((stack.p.data <= -3600) || (stack.p.data > 1200)) { return -EINVAL; } } wc->txgain[chan->chanpos - 1] = stack.p.data + 3599; break; case DAHDI_RADPAR_DEEMP: if (stack.p.data) wc->radmode[chan->chanpos - 1] |= RADMODE_DEEMP; else wc->radmode[chan->chanpos - 1] &= ~RADMODE_DEEMP; wc->rxgain[chan->chanpos - 1] = 1199; break; case DAHDI_RADPAR_PREEMP: if (stack.p.data) wc->radmode[chan->chanpos - 1] |= RADMODE_PREEMP; else wc->radmode[chan->chanpos - 1] &= ~RADMODE_PREEMP; wc->txgain[chan->chanpos - 1] = 3599; break; default: return -EINVAL; } qrv_dosetup(chan,wc); return 0; default: return -ENOTTY; } return 0; } static int wctdm_open(struct dahdi_chan *chan) { struct wctdm *wc; int channo; unsigned long flags; wc = chan->pvt; channo = chan->chanpos - 1; #if 0 if (!(wc->modmap & (1 << (chan->chanpos - 1)))) return -ENODEV; if (wc->dead) return -ENODEV; #endif if (wc->modtype[channo] == MOD_TYPE_FXO) { /* Reset the mwi indicators */ spin_lock_irqsave(&wc->reglock, flags); wc->mods[channo].fxo.neonmwi_debounce = 0; wc->mods[channo].fxo.neonmwi_offcounter = 0; wc->mods[channo].fxo.neonmwi_state = 0; spin_unlock_irqrestore(&wc->reglock, flags); } return 0; } static inline struct wctdm *span_to_wctdm(struct dahdi_span *span) { struct wctdm_span *s = container_of(span, struct wctdm_span, span); return s->wc; } static int wctdm_watchdog(struct dahdi_span *span, int event) { struct wctdm *wc = span_to_wctdm(span); dev_info(&wc->vb.pdev->dev, "TDM: Called watchdog\n"); return 0; } static int wctdm_close(struct dahdi_chan *chan) { struct wctdm *wc; int x; signed char reg; wc = chan->pvt; for (x = 0; x < wc->mods_per_board; x++) { if (MOD_TYPE_FXS == wc->modtype[x]) { wc->mods[x].fxs.idletxhookstate = POLARITY_XOR(x) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; } else if (MOD_TYPE_QRV == wc->modtype[x]) { int qrvcard = x & 0xfc; wc->qrvhook[x] = 0; wc->qrvhook[x + 2] = 0xff; wc->debouncetime[x] = QRV_DEBOUNCETIME; wc->qrvdebtime[x] = 0; wc->radmode[x] = 0; wc->txgain[x] = 3599; wc->rxgain[x] = 1199; reg = 0; if (!wc->qrvhook[qrvcard]) reg |= 1; if (!wc->qrvhook[qrvcard + 1]) reg |= 0x10; wc->sethook[qrvcard] = CMD_WR(3, reg); qrv_dosetup(chan,wc); } } return 0; } static int wctdm_hooksig(struct dahdi_chan *chan, enum dahdi_txsig txsig) { struct wctdm *wc = chan->pvt; int reg = 0, qrvcard; if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_QRV) { qrvcard = (chan->chanpos - 1) & 0xfc; switch(txsig) { case DAHDI_TXSIG_START: case DAHDI_TXSIG_OFFHOOK: wc->qrvhook[chan->chanpos - 1] = 1; break; case DAHDI_TXSIG_ONHOOK: wc->qrvhook[chan->chanpos - 1] = 0; break; default: dev_notice(&wc->vb.pdev->dev, "wctdm24xxp: Can't set tx state to %d\n", txsig); } reg = 0; if (!wc->qrvhook[qrvcard]) reg |= 1; if (!wc->qrvhook[qrvcard + 1]) reg |= 0x10; wc->sethook[qrvcard] = CMD_WR(3, reg); /* wctdm_setreg(wc, qrvcard, 3, reg); */ } else if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) { switch(txsig) { case DAHDI_TXSIG_START: case DAHDI_TXSIG_OFFHOOK: wc->mods[chan->chanpos - 1].fxo.offhook = 1; wc->sethook[chan->chanpos - 1] = CMD_WR(5, 0x9); /* wctdm_setreg(wc, chan->chanpos - 1, 5, 0x9); */ break; case DAHDI_TXSIG_ONHOOK: wc->mods[chan->chanpos - 1].fxo.offhook = 0; wc->sethook[chan->chanpos - 1] = CMD_WR(5, 0x8); /* wctdm_setreg(wc, chan->chanpos - 1, 5, 0x8); */ break; default: dev_notice(&wc->vb.pdev->dev, "wctdm24xxp: Can't set tx state to %d\n", txsig); } } else if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) { wctdm_fxs_hooksig(wc, chan->chanpos - 1, txsig); } return 0; } static void wctdm_dacs_connect(struct wctdm *wc, int srccard, int dstcard) { if (wc->dacssrc[dstcard] > - 1) { dev_notice(&wc->vb.pdev->dev, "wctdm_dacs_connect: Can't have double sourcing yet!\n"); return; } if (!((wc->modtype[srccard] == MOD_TYPE_FXS)||(wc->modtype[srccard] == MOD_TYPE_FXO))){ dev_notice(&wc->vb.pdev->dev, "wctdm_dacs_connect: Unsupported modtype for card %d\n", srccard); return; } if (!((wc->modtype[dstcard] == MOD_TYPE_FXS)||(wc->modtype[dstcard] == MOD_TYPE_FXO))){ dev_notice(&wc->vb.pdev->dev, "wctdm_dacs_connect: Unsupported modtype for card %d\n", dstcard); return; } if (debug) dev_info(&wc->vb.pdev->dev, "connect %d => %d\n", srccard, dstcard); wc->dacssrc[dstcard] = srccard; /* make srccard transmit to srccard+24 on the TDM bus */ if (wc->modtype[srccard] == MOD_TYPE_FXS) { /* proslic */ wctdm_setreg(wc, srccard, PCM_XMIT_START_COUNT_LSB, ((srccard+24) * 8) & 0xff); wctdm_setreg(wc, srccard, PCM_XMIT_START_COUNT_MSB, ((srccard+24) * 8) >> 8); } else if (wc->modtype[srccard] == MOD_TYPE_FXO) { /* daa */ wctdm_setreg(wc, srccard, 34, ((srccard+24) * 8) & 0xff); /* TX */ wctdm_setreg(wc, srccard, 35, ((srccard+24) * 8) >> 8); /* TX */ } /* have dstcard receive from srccard+24 on the TDM bus */ if (wc->modtype[dstcard] == MOD_TYPE_FXS) { /* proslic */ wctdm_setreg(wc, dstcard, PCM_RCV_START_COUNT_LSB, ((srccard+24) * 8) & 0xff); wctdm_setreg(wc, dstcard, PCM_RCV_START_COUNT_MSB, ((srccard+24) * 8) >> 8); } else if (wc->modtype[dstcard] == MOD_TYPE_FXO) { /* daa */ wctdm_setreg(wc, dstcard, 36, ((srccard+24) * 8) & 0xff); /* RX */ wctdm_setreg(wc, dstcard, 37, ((srccard+24) * 8) >> 8); /* RX */ } } static void wctdm_dacs_disconnect(struct wctdm *wc, int card) { if (wc->dacssrc[card] > -1) { if (debug) dev_info(&wc->vb.pdev->dev, "wctdm_dacs_disconnect: restoring TX for %d and RX for %d\n",wc->dacssrc[card], card); /* restore TX (source card) */ if (wc->modtype[wc->dacssrc[card]] == MOD_TYPE_FXS) { wctdm_setreg(wc, wc->dacssrc[card], PCM_XMIT_START_COUNT_LSB, (wc->dacssrc[card] * 8) & 0xff); wctdm_setreg(wc, wc->dacssrc[card], PCM_XMIT_START_COUNT_MSB, (wc->dacssrc[card] * 8) >> 8); } else if (wc->modtype[wc->dacssrc[card]] == MOD_TYPE_FXO) { wctdm_setreg(wc, card, 34, (card * 8) & 0xff); wctdm_setreg(wc, card, 35, (card * 8) >> 8); } else { dev_warn(&wc->vb.pdev->dev, "WARNING: wctdm_dacs_disconnect() called on unsupported modtype\n"); } /* restore RX (this card) */ if (MOD_TYPE_FXS == wc->modtype[card]) { wctdm_setreg(wc, card, PCM_RCV_START_COUNT_LSB, (card * 8) & 0xff); wctdm_setreg(wc, card, PCM_RCV_START_COUNT_MSB, (card * 8) >> 8); } else if (MOD_TYPE_FXO == wc->modtype[card]) { wctdm_setreg(wc, card, 36, (card * 8) & 0xff); wctdm_setreg(wc, card, 37, (card * 8) >> 8); } else { dev_warn(&wc->vb.pdev->dev, "WARNING: wctdm_dacs_disconnect() called on unsupported modtype\n"); } wc->dacssrc[card] = -1; } } static int wctdm_dacs(struct dahdi_chan *dst, struct dahdi_chan *src) { struct wctdm *wc; if (!nativebridge) return 0; /* should this return -1 since unsuccessful? */ wc = dst->pvt; if (src) { wctdm_dacs_connect(wc, src->chanpos - 1, dst->chanpos - 1); if (debug) dev_info(&wc->vb.pdev->dev, "dacs connecct: %d -> %d!\n\n", src->chanpos, dst->chanpos); } else { wctdm_dacs_disconnect(wc, dst->chanpos - 1); if (debug) dev_info(&wc->vb.pdev->dev, "dacs disconnect: %d!\n", dst->chanpos); } return 0; } static const struct dahdi_span_ops wctdm24xxp_analog_span_ops = { .owner = THIS_MODULE, .hooksig = wctdm_hooksig, .open = wctdm_open, .close = wctdm_close, .ioctl = wctdm_ioctl, .watchdog = wctdm_watchdog, .dacs = wctdm_dacs, #ifdef VPM_SUPPORT .echocan_create = wctdm_echocan_create, #endif }; static const struct dahdi_span_ops wctdm24xxp_digital_span_ops = { .owner = THIS_MODULE, .open = wctdm_open, .close = wctdm_close, .ioctl = wctdm_ioctl, .watchdog = wctdm_watchdog, .hdlc_hard_xmit = wctdm_hdlc_hard_xmit, .spanconfig = b400m_spanconfig, .chanconfig = b400m_chanconfig, .dacs = wctdm_dacs, #ifdef VPM_SUPPORT .echocan_create = wctdm_echocan_create, #endif }; static inline bool dahdi_is_digital_span(const struct dahdi_span *s) { return (s->linecompat > 0); } static struct wctdm_chan *wctdm_init_chan(struct wctdm *wc, struct wctdm_span *s, int chanoffset, int channo) { struct wctdm_chan *c; c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) return NULL; /* Do not change the procfs representation for non-hx8 cards. */ if (dahdi_is_digital_span(&s->span)) { sprintf(c->chan.name, "WCBRI/%d/%d/%d", wc->pos, s->spanno, channo); } else { sprintf(c->chan.name, "WCTDM/%d/%d", wc->pos, channo); } c->chan.chanpos = channo+1; c->chan.span = &s->span; c->chan.pvt = wc; c->timeslot = chanoffset + channo; return c; } #if 0 /** * wctdm_span_count() - Return the number of spans exported by this board. * * This is only called during initialization so let's just count the spans each * time we need this information as opposed to storing another variable in the * wctdm structure. */ static int wctdm_span_count(const struct wctdm *wc) { int i; int count = 0; for (i = 0; i < MAX_SPANS; ++i) { if (wc->spans[i]) ++count; } return count; } #endif static struct wctdm_span *wctdm_init_span(struct wctdm *wc, int spanno, int chanoffset, int chancount, int digital_span) { int x; struct pci_dev *pdev = wc->vb.pdev; struct wctdm_chan *c; struct wctdm_span *s; static int spancount; s = kzalloc(sizeof(*s), GFP_KERNEL); if (!s) return NULL; /* DAHDI stuff */ s->span.offset = spanno; s->spanno = spancount++; s->wc = wc; /* Do not change the procfs representation for non-hx8 cards. */ if (digital_span) sprintf(s->span.name, "WCBRI/%d/%d", wc->pos, s->spanno); else sprintf(s->span.name, "WCTDM/%d", wc->pos); snprintf(s->span.desc, sizeof(s->span.desc) - 1, "%s Board %d", wc->desc->name, wc->pos + 1); snprintf(s->span.location, sizeof(s->span.location) - 1, "PCI%s Bus %02d Slot %02d", (wc->flags[0] & FLAG_EXPRESS) ? " Express" : "", pdev->bus->number, PCI_SLOT(pdev->devfn) + 1); s->span.manufacturer = "Digium"; strncpy(s->span.devicetype, wc->desc->name, sizeof(s->span.devicetype) - 1); if (wc->companding == DAHDI_LAW_DEFAULT) { if (wc->digi_mods || digital_span) /* If we have a BRI module, Auto set to alaw */ s->span.deflaw = DAHDI_LAW_ALAW; else /* Auto set to ulaw */ s->span.deflaw = DAHDI_LAW_MULAW; } else if (wc->companding == DAHDI_LAW_ALAW) { /* Force everything to alaw */ s->span.deflaw = DAHDI_LAW_ALAW; } else { /* Auto set to ulaw */ s->span.deflaw = DAHDI_LAW_MULAW; } if (digital_span) { s->span.ops = &wctdm24xxp_digital_span_ops; s->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_B8ZS | DAHDI_CONFIG_D4; s->span.linecompat |= DAHDI_CONFIG_ESF | DAHDI_CONFIG_HDB3 | DAHDI_CONFIG_CCS | DAHDI_CONFIG_CRC4; s->span.linecompat |= DAHDI_CONFIG_NTTE | DAHDI_CONFIG_TERM; s->span.spantype = "TE"; } else { s->span.ops = &wctdm24xxp_analog_span_ops; s->span.flags = DAHDI_FLAG_RBS; /* analog sigcap handled in fixup_analog_span() */ } s->span.chans = kmalloc(sizeof(struct dahdi_chan *) * chancount, GFP_KERNEL); if (!s->span.chans) return NULL; /* allocate channels for the span */ for (x = 0; x < chancount; x++) { c = wctdm_init_chan(wc, s, chanoffset, x); if (!c) return NULL; wc->chans[chanoffset + x] = c; s->span.chans[x] = &c->chan; } s->span.channels = chancount; s->span.irq = pdev->irq; if (digital_span) { wc->chans[chanoffset + 0]->chan.sigcap = DAHDI_SIG_CLEAR; wc->chans[chanoffset + 1]->chan.sigcap = DAHDI_SIG_CLEAR; wc->chans[chanoffset + 2]->chan.sigcap = DAHDI_SIG_HARDHDLC; } wc->spans[spanno] = s; return s; } /** * should_set_alaw() - Should be called after all the spans are initialized. * * Returns true if the module companding should be set to alaw, otherwise * false. */ static bool should_set_alaw(const struct wctdm *wc) { if (DAHDI_LAW_DEFAULT == wc->companding) return (wc->digi_mods > 0); else if (DAHDI_LAW_ALAW == wc->companding) return true; else return false; } static void wctdm_fixup_analog_span(struct wctdm *wc, int spanno) { struct dahdi_span *s; int x, y; /* Finalize signalling */ y = 0; s = &wc->spans[spanno]->span; for (x = 0; x < wc->desc->ports; x++) { if (debug) { dev_info(&wc->vb.pdev->dev, "fixup_analog: x=%d, y=%d modtype=%d, " "s->chans[%d]=%p\n", x, y, wc->modtype[x], y, s->chans[y]); } if (wc->modtype[x] == MOD_TYPE_FXO) { int val; s->chans[y++]->sigcap = DAHDI_SIG_FXSKS | DAHDI_SIG_FXSLS | DAHDI_SIG_SF | DAHDI_SIG_CLEAR; val = should_set_alaw(wc) ? 0x20 : 0x28; #ifdef DEBUG val = (digitalloopback) ? 0x30 : val; #endif wctdm_setreg(wc, x, 33, val); } else if (wc->modtype[x] == MOD_TYPE_FXS) { s->chans[y++]->sigcap = DAHDI_SIG_FXOKS | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR; wctdm_setreg(wc, x, 1, (should_set_alaw(wc) ? 0x20 : 0x28)); } else if (wc->modtype[x] == MOD_TYPE_QRV) { s->chans[y++]->sigcap = DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR; } else { s->chans[y++]->sigcap = 0; } } for (x = 0; x < MAX_SPANS; x++) { if (!wc->spans[x]) continue; if (wc->vpm100) strncat(wc->spans[x]->span.devicetype, " (VPM100M)", sizeof(wc->spans[x]->span.devicetype) - 1); else if (wc->vpmadt032) strncat(wc->spans[x]->span.devicetype, " (VPMADT032)", sizeof(wc->spans[x]->span.devicetype) - 1); } } static int wctdm_vpm_init(struct wctdm *wc) { unsigned char reg; unsigned int mask; unsigned int ver; unsigned char vpmver=0; unsigned int i, x, y; for (x=0;xvb.pdev->dev, "VPM100: Chip %d: ver %02x\n", x, ver); if (ver != 0x33) { if (x) dev_info(&wc->vb.pdev->dev, "VPM100: Inoperable\n"); wc->vpm100 = 0; return -ENODEV; } if (!x) { vpmver = wctdm_vpm_in(wc, x, 0x1a6) & 0xf; dev_info(&wc->vb.pdev->dev, "VPM Revision: %02x\n", vpmver); } /* Setup GPIO's */ for (y=0;y<4;y++) { wctdm_vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */ if (y == 3) wctdm_vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */ else wctdm_vpm_out(wc, x, 0x1ac + y, 0xff); /* GPIO dir */ wctdm_vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */ } /* Setup TDM path - sets fsync and tdm_clk as inputs */ reg = wctdm_vpm_in(wc, x, 0x1a3); /* misc_con */ wctdm_vpm_out(wc, x, 0x1a3, reg & ~2); /* Setup Echo length (256 taps) */ wctdm_vpm_out(wc, x, 0x022, 0); /* Setup timeslots */ if (vpmver == 0x01) { wctdm_vpm_out(wc, x, 0x02f, 0x00); wctdm_vpm_out(wc, x, 0x023, 0xff); mask = 0x11111111 << x; } else { wctdm_vpm_out(wc, x, 0x02f, 0x20 | (x << 3)); wctdm_vpm_out(wc, x, 0x023, 0x3f); mask = 0x0000003f; } /* Setup the tdm channel masks for all chips*/ for (i = 0; i < 4; i++) wctdm_vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff); /* Setup convergence rate */ reg = wctdm_vpm_in(wc,x,0x20); reg &= 0xE0; if (wc->companding == DAHDI_LAW_DEFAULT) { if (wc->digi_mods) /* If we have a BRI module, Auto set to alaw */ reg |= 0x01; else /* Auto set to ulaw */ reg &= ~0x01; } else if (wc->companding == DAHDI_LAW_ALAW) { /* Force everything to alaw */ reg |= 0x01; } else { /* Auto set to ulaw */ reg &= ~0x01; } wctdm_vpm_out(wc,x,0x20,(reg | 0x20)); /* Initialize echo cans */ for (i = 0 ; i < MAX_TDM_CHAN; i++) { if (mask & (0x00000001 << i)) wctdm_vpm_out(wc,x,i,0x00); } msleep(30); /* Put in bypass mode */ for (i = 0 ; i < MAX_TDM_CHAN ; i++) { if (mask & (0x00000001 << i)) { wctdm_vpm_out(wc,x,i,0x01); } } /* Enable bypass */ for (i = 0 ; i < MAX_TDM_CHAN ; i++) { if (mask & (0x00000001 << i)) wctdm_vpm_out(wc,x,0x78 + i,0x01); } /* Enable DTMF detectors (always DTMF detect all spans) */ for (i = 0; i < 6; i++) { if (vpmver == 0x01) wctdm_vpm_out(wc, x, 0x98 + i, 0x40 | (i << 2) | x); else wctdm_vpm_out(wc, x, 0x98 + i, 0x40 | i); } for (i = 0xB8; i < 0xC0; i++) wctdm_vpm_out(wc, x, i, 0xFF); for (i = 0xC0; i < 0xC4; i++) wctdm_vpm_out(wc, x, i, 0xff); } /* TODO: What do the different values for vpm100 mean? */ if (vpmver == 0x01) { wc->vpm100 = 2; } else { wc->vpm100 = 1; } dev_info(&wc->vb.pdev->dev, "Enabling VPM100 gain adjustments on any FXO ports found\n"); for (i = 0; i < wc->desc->ports; i++) { if (wc->modtype[i] == MOD_TYPE_FXO) { /* Apply negative Tx gain of 4.5db to DAA */ wctdm_setreg(wc, i, 38, 0x14); /* 4db */ wctdm_setreg(wc, i, 40, 0x15); /* 0.5db */ /* Apply negative Rx gain of 4.5db to DAA */ wctdm_setreg(wc, i, 39, 0x14); /* 4db */ wctdm_setreg(wc, i, 41, 0x15); /* 0.5db */ } } return 0; } static void get_default_portconfig(GpakPortConfig_t *portconfig) { memset(portconfig, 0, sizeof(GpakPortConfig_t)); /* First Serial Port config */ portconfig->SlotsSelect1 = SlotCfgNone; portconfig->FirstBlockNum1 = 0; portconfig->FirstSlotMask1 = 0x0000; portconfig->SecBlockNum1 = 1; portconfig->SecSlotMask1 = 0x0000; portconfig->SerialWordSize1 = SerWordSize8; portconfig->CompandingMode1 = cmpNone; portconfig->TxFrameSyncPolarity1 = FrameSyncActHigh; portconfig->RxFrameSyncPolarity1 = FrameSyncActHigh; portconfig->TxClockPolarity1 = SerClockActHigh; portconfig->RxClockPolarity1 = SerClockActHigh; portconfig->TxDataDelay1 = DataDelay0; portconfig->RxDataDelay1 = DataDelay0; portconfig->DxDelay1 = Disabled; portconfig->ThirdSlotMask1 = 0x0000; portconfig->FouthSlotMask1 = 0x0000; portconfig->FifthSlotMask1 = 0x0000; portconfig->SixthSlotMask1 = 0x0000; portconfig->SevenSlotMask1 = 0x0000; portconfig->EightSlotMask1 = 0x0000; /* Second Serial Port config */ portconfig->SlotsSelect2 = SlotCfg2Groups; portconfig->FirstBlockNum2 = 0; portconfig->FirstSlotMask2 = 0xffff; portconfig->SecBlockNum2 = 1; portconfig->SecSlotMask2 = 0xffff; portconfig->SerialWordSize2 = SerWordSize8; portconfig->CompandingMode2 = cmpNone; portconfig->TxFrameSyncPolarity2 = FrameSyncActHigh; portconfig->RxFrameSyncPolarity2 = FrameSyncActHigh; portconfig->TxClockPolarity2 = SerClockActHigh; portconfig->RxClockPolarity2 = SerClockActLow; portconfig->TxDataDelay2 = DataDelay0; portconfig->RxDataDelay2 = DataDelay0; portconfig->DxDelay2 = Disabled; portconfig->ThirdSlotMask2 = 0x0000; portconfig->FouthSlotMask2 = 0x0000; portconfig->FifthSlotMask2 = 0x0000; portconfig->SixthSlotMask2 = 0x0000; portconfig->SevenSlotMask2 = 0x0000; portconfig->EightSlotMask2 = 0x0000; /* Third Serial Port Config */ portconfig->SlotsSelect3 = SlotCfg2Groups; portconfig->FirstBlockNum3 = 0; portconfig->FirstSlotMask3 = 0xffff; portconfig->SecBlockNum3 = 1; portconfig->SecSlotMask3 = 0xffff; portconfig->SerialWordSize3 = SerWordSize8; portconfig->CompandingMode3 = cmpNone; portconfig->TxFrameSyncPolarity3 = FrameSyncActHigh; portconfig->RxFrameSyncPolarity3 = FrameSyncActHigh; portconfig->TxClockPolarity3 = SerClockActHigh; portconfig->RxClockPolarity3 = SerClockActLow; portconfig->TxDataDelay3 = DataDelay0; portconfig->RxDataDelay3 = DataDelay0; portconfig->DxDelay3 = Disabled; portconfig->ThirdSlotMask3 = 0x0000; portconfig->FouthSlotMask3 = 0x0000; portconfig->FifthSlotMask3 = 0x0000; portconfig->SixthSlotMask3 = 0x0000; portconfig->SevenSlotMask3 = 0x0000; portconfig->EightSlotMask3 = 0x0000; } static int wctdm_initialize_vpmadt032(struct wctdm *wc) { int x; int res; unsigned long flags; struct vpmadt032_options options; GpakPortConfig_t portconfig; spin_lock_irqsave(&wc->reglock, flags); for (x = NUM_MODULES; x < NUM_MODULES + NUM_EC; x++) wc->modtype[x] = MOD_TYPE_NONE; spin_unlock_irqrestore(&wc->reglock, flags); options.debug = debug; options.vpmnlptype = vpmnlptype; options.vpmnlpthresh = vpmnlpthresh; options.vpmnlpmaxsupp = vpmnlpmaxsupp; options.channels = wc->avchannels; wc->vpmadt032 = vpmadt032_alloc(&options, wc->board_name); if (!wc->vpmadt032) return -ENOMEM; wc->vpmadt032->setchanconfig_from_state = setchanconfig_from_state; /* wc->vpmadt032->context = wc; */ /* Pull the configuration information from the span holding * the analog channels. */ get_default_portconfig(&portconfig); res = vpmadt032_init(wc->vpmadt032, &wc->vb); if (res) { vpmadt032_free(wc->vpmadt032); wc->vpmadt032 = NULL; return res; } /* Now we need to configure the VPMADT032 module for this * particular board. */ res = config_vpmadt032(wc->vpmadt032, wc); if (res) { vpmadt032_free(wc->vpmadt032); wc->vpmadt032 = NULL; return res; } return 0; } static int wctdm_initialize_vpm(struct wctdm *wc) { int res = 0; if (!vpmsupport) { dev_notice(&wc->vb.pdev->dev, "VPM: Support Disabled\n"); } else if (!wctdm_vpm_init(wc)) { dev_info(&wc->vb.pdev->dev, "VPM: Present and operational (Rev %c)\n", 'A' + wc->vpm100 - 1); wc->ctlreg |= 0x10; } else { res = wctdm_initialize_vpmadt032(wc); if (!res) wc->ctlreg |= 0x10; } return res; } static int wctdm_identify_modules(struct wctdm *wc) { int x; unsigned long flags; wc->ctlreg = 0x00; /* Make sure all units go into daisy chain mode */ spin_lock_irqsave(&wc->reglock, flags); /* * This looks a little weird. * * There are only 8 physical ports on the TDM/AEX800, but the code immediately * below sets 24 modules up. This has to do with the altcs magic that allows us * to have single-port and quad-port modules on these products. * The variable "mods_per_board" is set to the appropriate value just below the * next code block. * * Now why this is important: * The FXS modules come out of reset in a two-byte, non-chainable SPI mode. * This is currently incompatible with how we do things, so we need to set * them to a chained, 3-byte command mode. This is done by setting the module * type to MOD_TYPE_FXSINIT for a little while so that cmd_dequeue will * initialize the SLIC into the appropriate mode. * * This "go to 3-byte chained mode" command, however, wreaks havoc with HybridBRI. * * The solution: * Since HybridBRI is only designed to work in an 8-port card, and since the single-port * modules "show up" in SPI slots >= 8 in these cards, we only set SPI slots 8-23 to * MOD_TYPE_FXSINIT. The HybridBRI will never see the command that causes it to freak * out and the single-port FXS cards get what they need so that when we probe with altcs * we see them. */ for (x = 0; x < wc->mods_per_board; x++) wc->modtype[x] = MOD_TYPE_FXSINIT; wc->vpm100 = -1; for (x = wc->mods_per_board; x < wc->mods_per_board+NUM_EC; x++) wc->modtype[x] = MOD_TYPE_VPM; spin_unlock_irqrestore(&wc->reglock, flags); /* Wait just a bit; this makes sure that cmd_dequeue is emitting SPI commands in the appropriate mode(s). */ msleep(20); /* Now that all the cards have been reset, we can stop checking them all if there aren't as many */ spin_lock_irqsave(&wc->reglock, flags); wc->mods_per_board = wc->desc->ports; spin_unlock_irqrestore(&wc->reglock, flags); /* Reset modules */ for (x = 0; x < wc->mods_per_board; x++) { int sane = 0, ret = 0, readi = 0; if (fatal_signal_pending(current)) break; retry: if (!(ret = wctdm_init_proslic(wc, x, 0, 0, sane))) { wc->modmap |= (1 << x); if (debug & DEBUG_CARD) { readi = wctdm_getreg(wc,x,LOOP_I_LIMIT); dev_info(&wc->vb.pdev->dev, "Proslic module %d loop current is %dmA\n", x, ((readi*3)+20)); } dev_info(&wc->vb.pdev->dev, "Port %d: Installed -- AUTO FXS/DPO\n", x + 1); } else { if (ret != -2) { sane = 1; /* Init with Manual Calibration */ if (!wctdm_init_proslic(wc, x, 0, 1, sane)) { wc->modmap |= (1 << x); if (debug & DEBUG_CARD) { readi = wctdm_getreg(wc, x, LOOP_I_LIMIT); dev_info(&wc->vb.pdev->dev, "Proslic module %d loop current is %dmA\n", x, ((readi*3)+20)); } dev_info(&wc->vb.pdev->dev, "Port %d: Installed -- MANUAL FXS\n",x + 1); } else { dev_notice(&wc->vb.pdev->dev, "Port %d: FAILED FXS (%s)\n", x + 1, fxshonormode ? fxo_modes[_opermode].name : "FCC"); } } else if (!(ret = wctdm_init_voicedaa(wc, x, 0, 0, sane))) { wc->modmap |= (1 << x); dev_info(&wc->vb.pdev->dev, "Port %d: Installed -- AUTO FXO " "(%s mode)\n", x + 1, fxo_modes[_opermode].name); } else if (!wctdm_init_qrvdri(wc, x)) { wc->modmap |= 1 << x; dev_info(&wc->vb.pdev->dev, "Port %d: Installed -- QRV DRI card\n", x + 1); } else if (is_hx8(wc) && !wctdm_init_b400m(wc, x)) { wc->modmap |= (1 << x); dev_info(&wc->vb.pdev->dev, "Port %d: Installed -- BRI " "quad-span module\n", x + 1); } else { if ((wc->desc->ports != 24) && ((x & 0x3) == 1) && !wc->altcs[x]) { spin_lock_irqsave(&wc->reglock, flags); wc->altcs[x] = 2; if (wc->desc->ports == 4) { wc->altcs[x+1] = 3; wc->altcs[x+2] = 3; } wc->modtype[x] = MOD_TYPE_FXSINIT; spin_unlock_irqrestore(&wc->reglock, flags); msleep(20); spin_lock_irqsave(&wc->reglock, flags); wc->modtype[x] = MOD_TYPE_FXS; spin_unlock_irqrestore(&wc->reglock, flags); if (debug & DEBUG_CARD) dev_info(&wc->vb.pdev->dev, "Trying port %d with alternate chip select\n", x + 1); goto retry; } else { dev_info(&wc->vb.pdev->dev, "Port %d: Not installed\n", x + 1); wc->modtype[x] = MOD_TYPE_NONE; } } } } /* for (x...) */ return 0; } static struct pci_driver wctdm_driver; static void wctdm_back_out_gracefully(struct wctdm *wc) { int i; unsigned long flags; struct sframe_packet *frame; LIST_HEAD(local_list); voicebus_release(&wc->vb); #ifdef CONFIG_VOICEBUS_ECREFERENCE for (i = 0; i < ARRAY_SIZE(wc->ec_reference); ++i) { if (wc->ec_reference[i]) dahdi_fifo_free(wc->ec_reference[i]); } #endif for (i = 0; i < ARRAY_SIZE(wc->spans); ++i) { if (wc->spans[i] && wc->spans[i]->span.chans) kfree(wc->spans[i]->span.chans); kfree(wc->spans[i]); wc->spans[i] = NULL; } for (i = 0; i < ARRAY_SIZE(wc->chans); ++i) { kfree(wc->chans[i]); wc->chans[i] = NULL; } spin_lock_irqsave(&wc->frame_list_lock, flags); list_splice(&wc->frame_list, &local_list); spin_unlock_irqrestore(&wc->frame_list_lock, flags); while (!list_empty(&local_list)) { frame = list_entry(local_list.next, struct sframe_packet, node); list_del(&frame->node); kfree(frame); } kfree(wc); } static const struct voicebus_operations voicebus_operations = { .handle_receive = handle_receive, .handle_transmit = handle_transmit, }; static const struct voicebus_operations hx8_voicebus_operations = { .handle_receive = handle_hx8_receive, .handle_transmit = handle_hx8_transmit, }; struct cmd_results { u8 results[8]; }; static int hx8_send_command(struct wctdm *wc, const u8 *command, size_t count, int checksum, int application, int bootloader, struct cmd_results *results) { int ret = 0; struct vbb *vbb; struct sframe_packet *frame; const int MAX_COMMAND_LENGTH = 264 + 4; unsigned long flags; dma_addr_t dma_addr; might_sleep(); /* can't boot both into the application and the bootloader at once. */ WARN_ON((application > 0) && (bootloader > 0)); if ((application > 0) && (bootloader > 0)) return -EINVAL; WARN_ON(count > MAX_COMMAND_LENGTH); if (count > MAX_COMMAND_LENGTH) return -EINVAL; vbb = dma_pool_alloc(wc->vb.pool, GFP_KERNEL, &dma_addr); WARN_ON(!vbb); if (!vbb) return -ENOMEM; vbb->dma_addr = dma_addr; memset(vbb->data, 0, SFRAME_SIZE); memcpy(&vbb->data[EFRAME_SIZE + EFRAME_GAP], command, count); vbb->data[EFRAME_SIZE] = 0x80 | ((application) ? 0 : 0x40) | ((checksum) ? 0x20 : 0) | ((count & 0x100) >> 4); vbb->data[EFRAME_SIZE + 1] = count & 0xff; if (bootloader) vbb->data[EFRAME_SIZE + 3] = 0xAA; spin_lock_irqsave(&wc->vb.lock, flags); voicebus_transmit(&wc->vb, vbb); spin_unlock_irqrestore(&wc->vb.lock, flags); /* Do not wait for the response if the caller doesn't care about the * results. */ if (NULL == results) return 0; if (!wait_event_timeout(wc->regq, !list_empty(&wc->frame_list), 2*HZ)) { dev_err(&wc->vb.pdev->dev, "Timeout waiting " "for receive frame.\n"); ret = -EIO; } /* We only want the last packet received. Throw away anything else on * the list */ frame = NULL; spin_lock_irqsave(&wc->frame_list_lock, flags); while (!list_empty(&wc->frame_list)) { frame = list_entry(wc->frame_list.next, struct sframe_packet, node); list_del(&frame->node); if (!list_empty(&wc->frame_list)) { kfree(frame); frame = NULL; } } spin_unlock_irqrestore(&wc->frame_list_lock, flags); if (frame) { memcpy(results->results, &frame->sframe[EFRAME_SIZE], sizeof(results->results)); } else { ret = -EIO; } return ret; } static int hx8_get_fpga_version(struct wctdm *wc, u8 *major, u8 *minor) { int ret; struct cmd_results results; u8 command[] = {0xD7, 0x00}; ret = hx8_send_command(wc, command, ARRAY_SIZE(command), 0, 0, 0, &results); if (ret) return ret; *major = results.results[0]; *minor = results.results[2]; return 0; } static void hx8_cleanup_frame_list(struct wctdm *wc) { unsigned long flags; LIST_HEAD(local_list); struct sframe_packet *frame; spin_lock_irqsave(&wc->frame_list_lock, flags); list_splice_init(&wc->frame_list, &local_list); spin_unlock_irqrestore(&wc->frame_list_lock, flags); while (!list_empty(&local_list)) { frame = list_entry(local_list.next, struct sframe_packet, node); list_del(&frame->node); kfree(frame); } } static int hx8_switch_to_application(struct wctdm *wc) { int ret; u8 command[] = {0xD7, 0x00}; ret = hx8_send_command(wc, command, ARRAY_SIZE(command), 0, 1, 0, NULL); if (ret) return ret; msleep(1000); hx8_cleanup_frame_list(wc); return 0; } /** * hx8_switch_to_bootloader() - Send packet to switch hx8 into bootloader * */ static int hx8_switch_to_bootloader(struct wctdm *wc) { int ret; u8 command[] = {0xD7, 0x00}; ret = hx8_send_command(wc, command, ARRAY_SIZE(command), 0, 0, 1, NULL); if (ret) return ret; /* It takes some time for the FPGA to reload and switch it's * configuration. */ msleep(300); hx8_cleanup_frame_list(wc); return 0; } struct ha80000_firmware { u8 header[6]; u8 major_ver; u8 minor_ver; u8 data[54648]; u32 chksum; } __attribute__((packed)); static void hx8_send_dummy(struct wctdm *wc) { u8 command[] = {0xD7, 0x00}; hx8_send_command(wc, command, ARRAY_SIZE(command), 0, 0, 0, NULL); } static int hx8_read_status_register(struct wctdm *wc, u8 *status) { int ret; struct cmd_results results; u8 command[] = {0xD7, 0x00}; ret = hx8_send_command(wc, command, ARRAY_SIZE(command), 0, 0, 0, &results); if (ret) return ret; *status = results.results[3]; return 0; } static const unsigned int HYBRID_PAGE_SIZE = 264; static int hx8_write_buffer(struct wctdm *wc, const u8 *buffer, size_t size) { int ret = 0; struct cmd_results results; int padding_bytes = 0; u8 *local_data; u8 command[] = {0x84, 0, 0, 0}; if (size > HYBRID_PAGE_SIZE) return -EINVAL; if (size < HYBRID_PAGE_SIZE) padding_bytes = HYBRID_PAGE_SIZE - size; local_data = kmalloc(sizeof(command) + size + padding_bytes, GFP_KERNEL); if (!local_data) return -ENOMEM; memcpy(local_data, command, sizeof(command)); memcpy(&local_data[sizeof(command)], buffer, size); memset(&local_data[sizeof(command) + size], 0xff, padding_bytes); ret = hx8_send_command(wc, local_data, sizeof(command) + size + padding_bytes, 1, 0, 0, &results); if (ret) goto cleanup; cleanup: kfree(local_data); return ret; } static int hx8_buffer_to_page(struct wctdm *wc, const unsigned int page) { int ret; struct cmd_results results; u8 command[] = {0x83, (page & 0x180) >> 7, (page & 0x7f) << 1, 0x00}; ret = hx8_send_command(wc, command, sizeof(command), 1, 0, 0, &results); if (ret) return ret; return 0; } static int hx8_wait_for_ready(struct wctdm *wc, const int timeout) { int ret; u8 status; unsigned long local_timeout = jiffies + timeout; do { ret = hx8_read_status_register(wc, &status); if (ret) return ret; if ((status & 0x80) > 0) break; } while (time_after(local_timeout, jiffies)); if (time_after(jiffies, local_timeout)) return -EIO; return 0; } /** * hx8_reload_application - reload the application firmware * * NOTE: The caller should ensure that the board is in bootloader mode before * calling this function. */ static int hx8_reload_application(struct wctdm *wc, const struct ha80000_firmware *ha8_fw) { unsigned int cur_page; const u8 *data; u8 status; int ret = 0; const int HYBRID_PAGE_COUNT = (sizeof(ha8_fw->data)) / HYBRID_PAGE_SIZE; dev_info(&wc->vb.pdev->dev, "Reloading firmware. Do not power down " "the system until the process is complete.\n"); BUG_ON(!ha8_fw); might_sleep(); data = &ha8_fw->data[0]; ret = hx8_read_status_register(wc, &status); if (ret) return ret; for (cur_page = 0; cur_page < HYBRID_PAGE_COUNT; ++cur_page) { ret = hx8_write_buffer(wc, data, HYBRID_PAGE_SIZE); if (ret) return ret; /* The application starts out at page 0x100 */ ret = hx8_buffer_to_page(wc, 0x100 + cur_page); if (ret) return ret; /* wait no more than a second for the write to the page to * finish */ ret = hx8_wait_for_ready(wc, HZ); if (ret) return ret; data += HYBRID_PAGE_SIZE; } return ret; } static void print_hx8_recovery_message(struct device *dev) { dev_warn(dev, "The firmware may be corrupted. Please completely " "power off your system, power on, and then reload the driver " "with the 'forceload' module parameter set to 1 to attempt " "recovery.\n"); } /** * hx8_check_firmware - Check the firmware version and load a new one possibly. * */ static int hx8_check_firmware(struct wctdm *wc) { int ret; u8 major; u8 minor; const struct firmware *fw; const struct ha80000_firmware *ha8_fw; struct device *dev = &wc->vb.pdev->dev; int retries = 10; BUG_ON(!is_hx8(wc)); might_sleep(); do { hx8_send_dummy(wc); ret = hx8_get_fpga_version(wc, &major, &minor); if (!ret) break; if (fatal_signal_pending(current)) return -EINTR; } while (--retries); if (ret) { print_hx8_recovery_message(dev); return ret; } /* If we're in the bootloader, try to jump into the application. */ if ((1 == major) && (0x80 == minor) && !forceload) { dev_dbg(dev, "Switching to application.\n"); hx8_switch_to_application(wc); ret = hx8_get_fpga_version(wc, &major, &minor); if (ret) { print_hx8_recovery_message(dev); return ret; } } dev_dbg(dev, "FPGA VERSION: %02x.%02x\n", major, minor); ret = request_firmware(&fw, "dahdi-fw-hx8.bin", dev); if (ret) { dev_warn(dev, "Failed to load firmware from userspace, skipping " "check. (%d)\n", ret); return 0; } ha8_fw = (const struct ha80000_firmware *)fw->data; if ((fw->size != sizeof(*ha8_fw)) || (0 != memcmp("DIGIUM", ha8_fw->header, sizeof(ha8_fw->header))) || ((crc32(~0, (void *)ha8_fw, sizeof(*ha8_fw) - sizeof(u32)) ^ ~0) != ha8_fw->chksum)) { dev_warn(dev, "Firmware file is invalid. Skipping load.\n"); ret = 0; goto cleanup; } dev_dbg(dev, "FIRMWARE: %02x.%02x\n", ha8_fw->major_ver, ha8_fw->minor_ver); if (ha8_fw->major_ver == major && ha8_fw->minor_ver == minor) { dev_dbg(dev, "Firmware versions match, skipping load.\n"); ret = 0; goto cleanup; } if (2 == major) { hx8_switch_to_bootloader(wc); ret = hx8_get_fpga_version(wc, &major, &minor); if (ret) goto cleanup; } /* so now we're in boot loader mode, ready to load the new firmware. */ ret = hx8_reload_application(wc, ha8_fw); if (ret) goto cleanup; dev_dbg(dev, "Firmware reloaded. Booting into application.\n"); hx8_switch_to_application(wc); ret = hx8_get_fpga_version(wc, &major, &minor); if (ret) goto cleanup; dev_dbg(dev, "FPGA VERSION AFTER LOAD: %02x.%02x\n", major, minor); if (forceload) { dev_warn(dev, "Please unset forceload if your card is able to " "detect the installed modules.\n"); } cleanup: release_firmware(fw); dev_info(dev, "Hx8 firmware version: %d.%02d\n", major, minor); return ret; } #ifdef CONFIG_VOICEBUS_SYSFS static ssize_t voicebus_current_latency_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long flags; struct wctdm *wc = dev_get_drvdata(dev); unsigned int current_latency; spin_lock_irqsave(&wc->vb.lock, flags); current_latency = wc->vb.min_tx_buffer_count; spin_unlock_irqrestore(&wc->vb.lock, flags); return sprintf(buf, "%d\n", current_latency); } static DEVICE_ATTR(voicebus_current_latency, 0400, voicebus_current_latency_show, NULL); static ssize_t vpm_firmware_version_show(struct device *dev, struct device_attribute *attr, char *buf) { int res; u16 version = 0; struct wctdm *wc = dev_get_drvdata(dev); if (wc->vpmadt032) { res = gpakPingDsp(wc->vpmadt032->dspid, &version); if (res) { dev_info(&wc->vb.pdev->dev, "Failed gpakPingDsp %d\n", res); version = -1; } } return sprintf(buf, "%x.%02x\n", (version & 0xff00) >> 8, (version & 0xff)); } static DEVICE_ATTR(vpm_firmware_version, 0400, vpm_firmware_version_show, NULL); static void create_sysfs_files(struct wctdm *wc) { int ret; ret = device_create_file(&wc->vb.pdev->dev, &dev_attr_voicebus_current_latency); if (ret) { dev_info(&wc->vb.pdev->dev, "Failed to create device attributes.\n"); } ret = device_create_file(&wc->vb.pdev->dev, &dev_attr_vpm_firmware_version); if (ret) { dev_info(&wc->vb.pdev->dev, "Failed to create device attributes.\n"); } } static void remove_sysfs_files(struct wctdm *wc) { device_remove_file(&wc->vb.pdev->dev, &dev_attr_vpm_firmware_version); device_remove_file(&wc->vb.pdev->dev, &dev_attr_voicebus_current_latency); } #else static inline void create_sysfs_files(struct wctdm *wc) { return; } static inline void remove_sysfs_files(struct wctdm *wc) { return; } #endif /* CONFIG_VOICEBUS_SYSFS */ #ifdef USE_ASYNC_INIT struct async_data { struct pci_dev *pdev; const struct pci_device_id *ent; }; static int __devinit __wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent, async_cookie_t cookie) #else static int __devinit __wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) #endif { struct wctdm *wc; int i, ret; int anamods, digimods, curchan, curspan; neonmwi_offlimit_cycles = neonmwi_offlimit / MS_PER_HOOKCHECK; wc = kzalloc(sizeof(*wc), GFP_KERNEL); if (!wc) return -ENOMEM; down(&ifacelock); /* \todo this is a candidate for removal... */ for (i = 0; i < WC_MAX_IFACES; ++i) { if (!ifaces[i]) { ifaces[i] = wc; break; } } up(&ifacelock); #ifdef CONFIG_VOICEBUS_ECREFERENCE for (i = 0; i < ARRAY_SIZE(wc->ec_reference); ++i) { /* 256 is the smallest power of 2 that will contains the * maximum possible amount of latency. */ wc->ec_reference[i] = dahdi_fifo_alloc(256, GFP_KERNEL); if (IS_ERR(wc->ec_reference[i])) { ret = PTR_ERR(wc->ec_reference[i]); wc->ec_reference[i] = NULL; wctdm_back_out_gracefully(wc); return ret; } } #endif wc->desc = (struct wctdm_desc *)ent->driver_data; /* This is to insure that the analog span is given lowest priority */ wc->oldsync = -1; sema_init(&wc->syncsem, 1); INIT_LIST_HEAD(&wc->frame_list); spin_lock_init(&wc->frame_list_lock); snprintf(wc->board_name, sizeof(wc->board_name)-1, "%s%d", wctdm_driver.name, i); pci_set_drvdata(pdev, wc); wc->vb.ops = &voicebus_operations; wc->vb.pdev = pdev; wc->vb.debug = &debug; if (is_hx8(wc)) { wc->vb.ops = &hx8_voicebus_operations; ret = voicebus_boot_init(&wc->vb, wc->board_name); } else { wc->vb.ops = &voicebus_operations; ret = voicebus_init(&wc->vb, wc->board_name); voicebus_set_minlatency(&wc->vb, latency); voicebus_set_maxlatency(&wc->vb, max_latency); } if (ret) { kfree(wc); return ret; } create_sysfs_files(wc); voicebus_lock_latency(&wc->vb); init_waitqueue_head(&wc->regq); spin_lock_init(&wc->reglock); wc->mods_per_board = NUM_MODULES; wc->pos = i; wc->txident = 1; if (alawoverride) { companding = "alaw"; dev_info(&wc->vb.pdev->dev, "The module parameter alawoverride"\ " has been deprecated. Please use the "\ "parameter companding=alaw instead"); } if (!strcasecmp(companding, "alaw")) /* Force this card's companding to alaw */ wc->companding = DAHDI_LAW_ALAW; else if (!strcasecmp(companding, "ulaw")) /* Force this card's companding to ulaw */ wc->companding = DAHDI_LAW_MULAW; else /* Auto detect this card's companding */ wc->companding = DAHDI_LAW_DEFAULT; for (i = 0; i < NUM_MODULES; i++) { wc->flags[i] = wc->desc->flags; wc->dacssrc[i] = -1; } /* Start the hardware processing. */ if (voicebus_start(&wc->vb)) { BUG_ON(1); } if (is_hx8(wc)) { ret = hx8_check_firmware(wc); if (ret) { voicebus_release(&wc->vb); kfree(wc); return -EIO; } /* Switch to the normal operating mode for this card. */ voicebus_stop(&wc->vb); wc->vb.ops = &voicebus_operations; voicebus_set_minlatency(&wc->vb, latency); voicebus_set_maxlatency(&wc->vb, max_latency); voicebus_set_hx8_mode(&wc->vb); if (voicebus_start(&wc->vb)) BUG_ON(1); } /* first we have to make sure that we process all module data, we'll fine-tune it later in this routine. */ wc->avchannels = NUM_MODULES; /* Now track down what modules are installed */ wctdm_identify_modules(wc); if (fatal_signal_pending(current)) { wctdm_back_out_gracefully(wc); return -EINTR; } /* * Walk the module list and create a 3-channel span for every BRI module found. * Empty and analog modules get a common span which is allocated outside of this loop. */ anamods = digimods = 0; curchan = curspan = 0; for (i = 0; i < wc->mods_per_board; i++) { struct b400m *b4; if (wc->modtype[i] == MOD_TYPE_NONE) { ++curspan; continue; } else if (wc->modtype[i] == MOD_TYPE_BRI) { if (!is_hx8(wc)) { dev_info(&wc->vb.pdev->dev, "Digital modules " "detected on a non-hybrid card. " "This is unsupported.\n"); wctdm_back_out_gracefully(wc); return -EIO; } wc->spans[curspan] = wctdm_init_span(wc, curspan, curchan, 3, 1); if (!wc->spans[curspan]) { wctdm_back_out_gracefully(wc); return -EIO; } b4 = wc->mods[i].bri; b400m_set_dahdi_span(b4, i & 0x03, wc->spans[curspan]); ++curspan; curchan += 3; if (!(i & 0x03)) { b400m_post_init(b4); ++digimods; } } else { /* * FIXME: ABK: * create a wctdm_chan for every analog module and link them into a span of their own down below. * then evaluate all of the callbacks and hard-code whether they are receiving a dahdi_chan or wctdm_chan *. * Finally, move the union from the wctdm structure to the dahdi_chan structure, and we should have something * resembling a clean dynamic # of channels/dynamic # of spans driver. */ ++curspan; ++anamods; } if (digimods > 2) { dev_info(&wc->vb.pdev->dev, "More than two digital modules detected. This is unsupported.\n"); wctdm_back_out_gracefully(wc); return -EIO; } } wc->digi_mods = digimods; /* create an analog span if there are analog modules, or if there are no digital ones. */ if (anamods || !digimods) { if (!digimods) { curspan = 0; } wctdm_init_span(wc, curspan, curchan, wc->desc->ports, 0); wctdm_fixup_analog_span(wc, curspan); wc->aspan = wc->spans[curspan]; curchan += wc->desc->ports; ++curspan; } /* Now fix up the timeslots for the analog modules, since the digital * modules are always first */ for (i = 0; i < wc->mods_per_board; i++) { if (wc->modtype[i] == MOD_TYPE_FXS) { wctdm_proslic_set_ts(wc, i, (digimods * 12) + i); } else if (wc->modtype[i] == MOD_TYPE_FXO) { wctdm_voicedaa_set_ts(wc, i, (digimods * 12) + i); } else if (wc->modtype[i] == MOD_TYPE_QRV) { wctdm_qrvdri_set_ts(wc, i, (digimods * 12) + i); } } /* This shouldn't ever occur, but if we don't try to trap it, the driver * will be scribbling into memory it doesn't own. */ BUG_ON(curchan > 24); wc->avchannels = curchan; wctdm_initialize_vpm(wc); #ifdef USE_ASYNC_INIT async_synchronize_cookie(cookie); #endif /* We should be ready for DAHDI to come in now. */ for (i = 0; i < MAX_SPANS; ++i) { if (!wc->spans[i]) continue; if (dahdi_register(&wc->spans[i]->span, 0)) { dev_notice(&wc->vb.pdev->dev, "Unable to register span %d with DAHDI\n", i); while (i) dahdi_unregister(&wc->spans[i--]->span); wctdm_back_out_gracefully(wc); return -1; } } wc->initialized = 1; dev_info(&wc->vb.pdev->dev, "Found a %s: %s (%d BRI spans, %d analog %s)\n", (is_hx8(wc)) ? "Hybrid card" : "Wildcard TDM", wc->desc->name, digimods*4, anamods, (anamods == 1) ? "channel" : "channels"); ret = 0; voicebus_unlock_latency(&wc->vb); return 0; } #ifdef USE_ASYNC_INIT static __devinit void wctdm_init_one_async(void *data, async_cookie_t cookie) { struct async_data *dat = data; __wctdm_init_one(dat->pdev, dat->ent, cookie); kfree(dat); } static int __devinit wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct async_data *dat; dat = kmalloc(sizeof(*dat), GFP_KERNEL); /* If we can't allocate the memory for the async_data, odds are we won't * be able to initialize the device either, but let's try synchronously * anyway... */ if (!dat) return __wctdm_init_one(pdev, ent, 0); dat->pdev = pdev; dat->ent = ent; async_schedule(wctdm_init_one_async, dat); return 0; } #else static int __devinit wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { return __wctdm_init_one(pdev, ent); } #endif static void wctdm_release(struct wctdm *wc) { int i; if (wc->initialized) { for (i = 0; i < MAX_SPANS; i++) { if (wc->spans[i]) dahdi_unregister(&wc->spans[i]->span); } } down(&ifacelock); for (i = 0; i < WC_MAX_IFACES; i++) if (ifaces[i] == wc) break; ifaces[i] = NULL; up(&ifacelock); wctdm_back_out_gracefully(wc); } static void __devexit wctdm_remove_one(struct pci_dev *pdev) { struct wctdm *wc = pci_get_drvdata(pdev); struct vpmadt032 *vpm = wc->vpmadt032; int i; if (wc) { remove_sysfs_files(wc); if (vpm) { clear_bit(VPM150M_DTMFDETECT, &vpm->control); clear_bit(VPM150M_ACTIVE, &vpm->control); flush_scheduled_work(); } /* shut down any BRI modules */ for (i = 0; i < wc->mods_per_board; i += 4) { if (wc->modtype[i] == MOD_TYPE_BRI) wctdm_unload_b400m(wc, i); } voicebus_stop(&wc->vb); if (vpm) { vpmadt032_free(wc->vpmadt032); wc->vpmadt032 = NULL; } dev_info(&wc->vb.pdev->dev, "Freed a %s\n", (is_hx8(wc)) ? "Hybrid card" : "Wildcard"); /* Release span */ wctdm_release(wc); } } static struct pci_device_id wctdm_pci_tbl[] = { { 0xd161, 0x2400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm2400 }, { 0xd161, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm800 }, { 0xd161, 0x8002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcaex800 }, { 0xd161, 0x8003, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcaex2400 }, { 0xd161, 0x8005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm410 }, { 0xd161, 0x8006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcaex410 }, { 0xd161, 0x8007, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcha80000 }, { 0xd161, 0x8008, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wchb80000 }, { 0 } }; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 12) static void wctdm_shutdown(struct pci_dev *pdev) { struct wctdm *wc = pci_get_drvdata(pdev); voicebus_stop(&wc->vb); } #endif MODULE_DEVICE_TABLE(pci, wctdm_pci_tbl); static struct pci_driver wctdm_driver = { .name = "wctdm24xxp", .probe = wctdm_init_one, .remove = __devexit_p(wctdm_remove_one), #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 12) .shutdown = wctdm_shutdown, #endif .id_table = wctdm_pci_tbl, }; static int __init wctdm_init(void) { int res; int x; for (x = 0; x < ARRAY_SIZE(fxo_modes); x++) { if (!strcmp(fxo_modes[x].name, opermode)) break; } if (x < ARRAY_SIZE(fxo_modes)) { _opermode = x; } else { printk(KERN_NOTICE "Invalid/unknown operating mode '%s' " "specified. Please choose one of:\n", opermode); for (x = 0; x < ARRAY_SIZE(fxo_modes); x++) printk(KERN_CONT " %s\n", fxo_modes[x].name); printk(KERN_NOTICE "Note this option is CASE SENSITIVE!\n"); return -ENODEV; } if (!strcmp(opermode, "AUSTRALIA")) { boostringer = 1; fxshonormode = 1; } /* for the voicedaa_check_hook defaults, if the user has not overridden them by specifying them as module parameters, then get the values from the selected operating mode */ if (battdebounce == 0) { battdebounce = fxo_modes[_opermode].battdebounce; } if (battalarm == 0) { battalarm = fxo_modes[_opermode].battalarm; } if (battthresh == 0) { battthresh = fxo_modes[_opermode].battthresh; } b400m_module_init(); res = dahdi_pci_module(&wctdm_driver); if (res) return -ENODEV; #ifdef USE_ASYNC_INIT async_synchronize_full(); #endif return 0; } static void __exit wctdm_cleanup(void) { pci_unregister_driver(&wctdm_driver); } module_param(debug, int, 0600); module_param(fxovoltage, int, 0600); module_param(loopcurrent, int, 0600); module_param(reversepolarity, int, 0600); #ifdef DEBUG module_param(robust, int, 0600); module_param(digitalloopback, int, 0400); MODULE_PARM_DESC(digitalloopback, "Set to 1 to place FXO modules into " \ "loopback mode for troubleshooting."); #endif module_param(opermode, charp, 0600); module_param(lowpower, int, 0600); module_param(boostringer, int, 0600); module_param(fastringer, int, 0600); module_param(fxshonormode, int, 0600); module_param(battdebounce, uint, 0600); module_param(battalarm, uint, 0600); module_param(battthresh, uint, 0600); module_param(nativebridge, int, 0600); module_param(fxotxgain, int, 0600); module_param(fxorxgain, int, 0600); module_param(fxstxgain, int, 0600); module_param(fxsrxgain, int, 0600); module_param(ringdebounce, int, 0600); module_param(fwringdetect, int, 0600); module_param(latency, int, 0400); module_param(max_latency, int, 0400); module_param(neonmwi_monitor, int, 0600); module_param(neonmwi_level, int, 0600); module_param(neonmwi_envelope, int, 0600); module_param(neonmwi_offlimit, int, 0600); #ifdef VPM_SUPPORT module_param(vpmsupport, int, 0400); module_param(vpmnlptype, int, 0400); module_param(vpmnlpthresh, int, 0400); module_param(vpmnlpmaxsupp, int, 0400); #endif /* Module parameters backed by code in xhfc.c */ module_param(bri_debug, int, 0600); MODULE_PARM_DESC(bri_debug, "bitmap: 1=general 2=dtmf 4=regops 8=fops 16=ec 32=st state 64=hdlc 128=alarm"); module_param(bri_spanfilter, int, 0600); MODULE_PARM_DESC(bri_spanfilter, "debug filter for spans. bitmap: 1=port 1, 2=port 2, 4=port 3, 8=port 4"); module_param(bri_alarmdebounce, int, 0600); MODULE_PARM_DESC(bri_alarmdebounce, "msec to wait before set/clear alarm condition"); module_param(bri_teignorered, int, 0600); MODULE_PARM_DESC(bri_teignorered, "1=ignore (do not inform DAHDI) if a red alarm exists in TE mode"); module_param(bri_persistentlayer1, int, 0600); MODULE_PARM_DESC(bri_persistentlayer1, "Set to 0 for disabling automatic layer 1 reactivation (when other end deactivates it)"); module_param(timingcable, int, 0600); MODULE_PARM_DESC(timingcable, "Set to 1 for enabling timing cable. This means that *all* cards in the system are linked together with a single timing cable"); module_param(forceload, int, 0600); MODULE_PARM_DESC(forceload, "Set to 1 in order to force an FPGA reload after power on (currently only for HA8/HB8 cards)."); module_param(alawoverride, int, 0400); MODULE_PARM_DESC(alawoverride, "This option has been deprecated. Please use "\ "the parameter \"companding\" instead"); module_param(companding, charp, 0400); MODULE_PARM_DESC(companding, "Change the companding to \"auto\" or \"alaw\" " \ "or \"ulaw\". Auto (default) will set everything to ulaw " \ "unless a BRI module is installed. It will use alaw in that " "case."); MODULE_DESCRIPTION("VoiceBus Driver for Wildcard Analog and Hybrid Cards"); MODULE_AUTHOR("Digium Incorporated "); MODULE_ALIAS("wctdm8xxp"); MODULE_ALIAS("wctdm4xxp"); MODULE_ALIAS("wcaex24xx"); MODULE_ALIAS("wcaex8xx"); MODULE_ALIAS("wcaex4xx"); MODULE_LICENSE("GPL v2"); module_init(wctdm_init); module_exit(wctdm_cleanup);