dahdi-linux/drivers/dahdi/voicebus/vpmoct.c

855 lines
21 KiB
C
Raw Normal View History

/*
* VPMOCT Driver.
*
* Written by Russ Meyerriecks <rmeyerriecks@digium.com>
*
* Copyright (C) 2010-2011 Digium, Inc.
*
* All rights reserved.
*
*/
/*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2 as published by the
* Free Software Foundation. See the LICENSE file included with
* this program for more details.
*/
#include <linux/jiffies.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/crc32.h>
#include "voicebus/vpmoct.h"
#include "linux/firmware.h"
struct vpmoct_header {
u8 header[6];
__le32 chksum;
u8 pad[20];
u8 major;
u8 minor;
} __packed;
static int _vpmoct_read(struct vpmoct *vpm, u8 address,
void *data, size_t size,
u8 *new_command, u8 *new_address)
{
struct vpmoct_cmd *cmd;
unsigned long flags;
if (unlikely(size >= ARRAY_SIZE(cmd->data))) {
memset(data, -1, size);
return -1;
}
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd) {
dev_info(vpm->dev, "Unable to allocate memory for vpmoct_cmd\n");
return 0;
}
init_completion(&cmd->complete);
cmd->command = 0x60 + size;
cmd->address = address;
cmd->chunksize = size;
spin_lock_irqsave(&vpm->list_lock, flags);
list_add_tail(&cmd->node, &vpm->pending_list);
spin_unlock_irqrestore(&vpm->list_lock, flags);
/* Wait for receiveprep to process our result */
if (!wait_for_completion_timeout(&cmd->complete, HZ/5)) {
spin_lock_irqsave(&vpm->list_lock, flags);
list_del(&cmd->node);
spin_unlock_irqrestore(&vpm->list_lock, flags);
kfree(cmd);
dev_err(vpm->dev, "vpmoct_read_byte cmd timed out\n");
return 0;
}
memcpy(data, &cmd->data[0], size);
if (new_command)
*new_command = cmd->command;
if (new_address)
*new_address = cmd->address;
kfree(cmd);
return 0;
}
static u8 vpmoct_read_byte(struct vpmoct *vpm, u8 address)
{
u8 val;
_vpmoct_read(vpm, address, &val, sizeof(val), NULL, NULL);
return val;
}
static u32 vpmoct_read_dword(struct vpmoct *vpm, u8 address)
{
__le32 val;
_vpmoct_read(vpm, address, &val, sizeof(val), NULL, NULL);
return le32_to_cpu(val);
}
static void vpmoct_write_byte(struct vpmoct *vpm, u8 address, u8 data)
{
struct vpmoct_cmd *cmd;
unsigned long flags;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd) {
dev_info(vpm->dev, "Unable to allocate memory for vpmoct_cmd\n");
return;
}
cmd->command = 0x21;
cmd->address = address;
cmd->data[0] = data;
cmd->chunksize = 1;
spin_lock_irqsave(&vpm->list_lock, flags);
list_add_tail(&cmd->node, &vpm->pending_list);
spin_unlock_irqrestore(&vpm->list_lock, flags);
}
static void vpmoct_write_dword(struct vpmoct *vpm, u8 address, u32 data)
{
struct vpmoct_cmd *cmd;
unsigned long flags;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd) {
dev_info(vpm->dev, "Unable to allocate memory for vpmoct_cmd\n");
return;
}
cmd->command = 0x20 + sizeof(data);
cmd->address = address;
*(__le32 *)(&cmd->data[0]) = cpu_to_le32(data);
cmd->chunksize = sizeof(data);
spin_lock_irqsave(&vpm->list_lock, flags);
list_add_tail(&cmd->node, &vpm->pending_list);
spin_unlock_irqrestore(&vpm->list_lock, flags);
}
static void vpmoct_write_chunk(struct vpmoct *vpm, u8 address,
const u8 *data, u8 chunksize)
{
struct vpmoct_cmd *cmd;
unsigned long flags;
if (unlikely(chunksize > ARRAY_SIZE(cmd->data)))
return;
cmd = kzalloc(sizeof(*cmd), GFP_ATOMIC);
if (unlikely(!cmd)) {
dev_info(vpm->dev, "Unable to allocate memory for vpmoct_cmd\n");
return;
}
cmd->command = 0x20 + chunksize;
cmd->address = address;
cmd->chunksize = chunksize;
memcpy(cmd->data, data, chunksize);
spin_lock_irqsave(&vpm->list_lock, flags);
list_add_tail(&cmd->node, &vpm->pending_list);
spin_unlock_irqrestore(&vpm->list_lock, flags);
}
static u8 vpmoct_resync(struct vpmoct *vpm)
{
unsigned long time;
u8 status = 0xff;
u8 address;
u8 command;
/* Poll the status register until it returns valid values
* This is because we have to wait on the bootloader to do
* its thing.
* Timeout after 3 seconds
*/
time = jiffies + 3*HZ;
while (time_after(time, jiffies) && (0xff == status)) {
status = _vpmoct_read(vpm, VPMOCT_BOOT_STATUS, &status,
sizeof(status), &command, &address);
/* Throw out invalid statuses */
if ((0x55 != command) || (0xaa != address))
status = 0xff;
}
if ((status != 0xff) && status)
dev_info(vpm->dev, "Resync with status %x\n", status);
return status;
}
static inline short vpmoct_erase_flash(struct vpmoct *vpm)
{
short res;
vpmoct_write_byte(vpm, VPMOCT_BOOT_CMD, VPMOCT_BOOT_FLASH_ERASE);
res = vpmoct_resync(vpm);
if (res)
dev_info(vpm->dev, "Unable to erase flash\n");
return res;
}
static inline short
vpmoct_send_firmware_header(struct vpmoct *vpm, const struct firmware *fw)
{
unsigned short i;
short res;
/* Send the encrypted firmware header */
for (i = 0; i < VPMOCT_FIRM_HEADER_LEN; i++) {
vpmoct_write_byte(vpm, VPMOCT_BOOT_RAM+i,
fw->data[i + sizeof(struct vpmoct_header)]);
}
/* Decrypt header */
vpmoct_write_byte(vpm, VPMOCT_BOOT_CMD, VPMOCT_BOOT_DECRYPT);
res = vpmoct_resync(vpm);
if (res)
dev_info(vpm->dev, "Unable to send firmware header\n");
return res;
}
static inline short
vpmoct_send_firmware_body(struct vpmoct *vpm, const struct firmware *fw)
{
unsigned int i, ram_index, flash_index, flash_address;
const u8 *buf;
u8 chunksize;
/* Load the body of the firmware */
ram_index = 0;
flash_index = 0;
flash_address = 0;
for (i = VPMOCT_FIRM_HEADER_LEN*2; i < fw->size;) {
if (ram_index >= VPMOCT_BOOT_RAM_LEN) {
/* Tell bootloader to load ram buffer into buffer */
vpmoct_write_byte(vpm, VPMOCT_BOOT_CMD,
0x10 + flash_index);
/* Assuming the memory load doesn't take longer than 1
* eframe just insert a blank eframe before continuing
* the firmware load */
vpmoct_read_byte(vpm, VPMOCT_BOOT_STATUS);
ram_index = 0;
flash_index++;
}
if (flash_index >= VPMOCT_FLASH_BUF_SECTIONS) {
/* Tell the bootloader the memory address for load */
vpmoct_write_dword(vpm, VPMOCT_BOOT_ADDRESS1,
flash_address);
/* Tell the bootloader to load from flash buffer */
vpmoct_write_byte(vpm, VPMOCT_BOOT_CMD,
VPMOCT_BOOT_FLASH_COPY);
if (vpmoct_resync(vpm))
goto error;
flash_index = 0;
flash_address = i-VPMOCT_FIRM_HEADER_LEN*2;
}
/* Try to buffer for batch writes if possible */
chunksize = VPMOCT_BOOT_RAM_LEN - ram_index;
if (chunksize > VPMOCT_MAX_CHUNK)
chunksize = VPMOCT_MAX_CHUNK;
buf = &fw->data[i];
vpmoct_write_chunk(vpm, VPMOCT_BOOT_RAM+ram_index,
buf, chunksize);
ram_index += chunksize;
i += chunksize;
}
/* Flush remaining ram buffer to flash buffer */
vpmoct_write_byte(vpm, VPMOCT_BOOT_CMD,
VPMOCT_BOOT_FLASHLOAD + flash_index);
if (vpmoct_resync(vpm))
goto error;
/* Tell boot loader the memory address to flash load */
vpmoct_write_dword(vpm, VPMOCT_BOOT_ADDRESS1, flash_address);
/* Tell the bootloader to load flash from flash buffer */
vpmoct_write_byte(vpm, VPMOCT_BOOT_CMD, VPMOCT_BOOT_FLASH_COPY);
if (vpmoct_resync(vpm))
goto error;
return 0;
error:
dev_info(vpm->dev, "Unable to load firmware body\n");
return -1;
}
/**
* vpmoct_get_mode - Return the current operating mode of the VPMOCT032.
* @vpm: The vpm to query.
*
* Will be either BOOTLOADER, APPLICATION, or UNKNOWN.
*
*/
static enum vpmoct_mode vpmoct_get_mode(struct vpmoct *vpm)
{
int i;
enum vpmoct_mode ret = UNKNOWN;
char identifier[11] = {0};
for (i = 0; i < ARRAY_SIZE(identifier) - 1; i++)
identifier[i] = vpmoct_read_byte(vpm, VPMOCT_IDENT+i);
if (!memcmp(identifier, "bootloader", sizeof(identifier) - 1))
ret = BOOTLOADER;
else if (!memcmp(identifier, "VPMOCT032\0", sizeof(identifier) - 1))
ret = APPLICATION;
dev_dbg(vpm->dev, "vpmoct identifier: %s\n", identifier);
return ret;
}
static inline short
vpmoct_check_firmware_crc(struct vpmoct *vpm, size_t size, u8 major, u8 minor)
{
short ret = 0;
u8 status;
/* Load firmware size */
vpmoct_write_dword(vpm, VPMOCT_BOOT_RAM, size);
/* Load firmware version */
vpmoct_write_byte(vpm, VPMOCT_BOOT_RAM+8, major);
vpmoct_write_byte(vpm, VPMOCT_BOOT_RAM+9, minor);
/* Validate the firmware load */
vpmoct_write_byte(vpm, VPMOCT_BOOT_CMD, VPMOCT_BOOT_IMAGE_VALIDATE);
status = vpmoct_resync(vpm);
if (status) {
dev_info(vpm->dev,
"vpmoct firmware CRC check failed: %x\n", status);
/* TODO: Try the load again */
ret = -1;
} else {
/* Switch to application code */
vpmoct_write_dword(vpm, VPMOCT_BOOT_ADDRESS2, 0xDEADBEEF);
vpmoct_write_byte(vpm, VPMOCT_BOOT_CMD, VPMOCT_BOOT_REBOOT);
msleep(250);
status = vpmoct_resync(vpm);
if (APPLICATION != vpmoct_get_mode(vpm)) {
dev_info(vpm->dev,
"vpmoct firmware failed to switch to "
"application. (%x)\n", status);
ret = -1;
} else {
vpm->mode = APPLICATION;
dev_info(vpm->dev,
"vpmoct firmware uploaded successfully\n");
}
}
return ret;
}
static inline short vpmoct_switch_to_boot(struct vpmoct *vpm)
{
vpmoct_write_dword(vpm, 0x74, 0x00009876);
vpmoct_write_byte(vpm, 0x71, 0x02);
if (vpmoct_resync(vpm)) {
dev_info(vpm->dev, "Failed to switch to bootloader\n");
return -1;
}
vpm->mode = BOOTLOADER;
return 0;
}
struct vpmoct_load_work {
struct vpmoct *vpm;
struct work_struct work;
struct workqueue_struct *wq;
load_complete_func_t load_complete;
bool operational;
};
/**
* vpmoct_load_complete_fn -
*
* This function should run in the context of one of the system workqueues so
* that it can destroy any workqueues that may have been created to setup a
* long running firmware load.
*
*/
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void vpmoct_load_complete_fn(void *data)
{
struct vpmoct_load_work *work = data;
#else
static void vpmoct_load_complete_fn(struct work_struct *data)
{
struct vpmoct_load_work *work =
container_of(data, struct vpmoct_load_work, work);
#endif
/* Do not touch work->vpm after calling load complete. It may have
* been freed in the function by the board driver. */
work->load_complete(work->vpm->dev, work->operational);
destroy_workqueue(work->wq);
kfree(work);
}
/**
* vpmoct_load_complete - Call the load_complete function in a system workqueue.
* @work:
* @operational: Whether the VPM is functioning or not.
*
*/
static void
vpmoct_load_complete(struct vpmoct_load_work *work, bool operational)
{
work->operational = operational;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&work->work, vpmoct_load_complete_fn, work);
#else
INIT_WORK(&work->work, vpmoct_load_complete_fn);
#endif
schedule_work(&work->work);
}
static bool is_valid_vpmoct_firmware(const struct firmware *fw)
{
const struct vpmoct_header *header =
(const struct vpmoct_header *)fw->data;
u32 crc = crc32(~0, &fw->data[10], fw->size - 10) ^ ~0;
return (!memcmp("DIGIUM", header->header, sizeof(header->header)) &&
(le32_to_cpu(header->chksum) == crc));
}
static void vpmoct_set_defaults(struct vpmoct *vpm)
{
vpmoct_write_dword(vpm, 0x40, 0);
vpmoct_write_dword(vpm, 0x30, 0);
}
static const char *const FIRMWARE_NAME = "dahdi-fw-vpmoct032.bin";
#if defined(HOTPLUG_FIRMWARE)
static int
vpmoct_request_firmware(const struct firmware **fw, struct device *dev)
{
return request_firmware(fw, FIRMWARE_NAME, dev);
}
static void vpmoct_release_firmware(const struct firmware *fw)
{
release_firmware(fw);
}
#else
static int
vpmoct_request_firmware(const struct firmware **fw_p, struct device *dev)
{
struct firmware *fw;
extern void _binary_dahdi_fw_vpmoct032_bin_size;
extern u8 _binary_dahdi_fw_vpmoct032_bin_start[];
*fw_p = fw = kzalloc(sizeof(*fw), GFP_KERNEL);
if (!fw)
return -ENOMEM;
fw->data = _binary_dahdi_fw_vpmoct032_bin_start;
/* Yes... this is weird. objcopy gives us a symbol containing
the size of the firmware, not a pointer a variable containing the
size. The only way we can get the value of the symbol is to take
its address, so we define it as a pointer and then cast that value
to the proper type. */
fw->size = (size_t) &_binary_dahdi_fw_vpmoct032_bin_size;
return 0;
}
static void vpmoct_release_firmware(const struct firmware *fw)
{
kfree(fw);
}
#endif
/**
* vpmoct_load_flash - Check the current flash version and possibly load.
* @vpm: The VPMOCT032 module to check / load.
*
*/
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void vpmoct_load_flash(void *data)
{
struct vpmoct_load_work *work = data;
#else
static void vpmoct_load_flash(struct work_struct *data)
{
struct vpmoct_load_work *work =
container_of(data, struct vpmoct_load_work, work);
#endif
int res;
struct vpmoct *const vpm = work->vpm;
const struct firmware *fw;
const struct vpmoct_header *header;
char serial[VPMOCT_SERIAL_SIZE+1];
int i;
res = vpmoct_request_firmware(&fw, vpm->dev);
if (res) {
dev_warn(vpm->dev,
"vpmoct: Failed to load firmware from userspace! %d\n",
res);
header = NULL;
fw = NULL;
} else {
header = (const struct vpmoct_header *)fw->data;
}
if (vpm->mode == APPLICATION) {
/* Check the running application firmware
* for the proper version */
vpm->major = vpmoct_read_byte(vpm, VPMOCT_MAJOR);
vpm->minor = vpmoct_read_byte(vpm, VPMOCT_MINOR);
for (i = 0; i < VPMOCT_SERIAL_SIZE; i++)
serial[i] = vpmoct_read_byte(vpm, VPMOCT_SERIAL+i);
serial[VPMOCT_SERIAL_SIZE] = '\0';
dev_info(vpm->dev,
"vpmoct: Detected firmware v%d.%d Serial: %s\n",
vpm->major, vpm->minor,
(serial[0] != -1) ? serial : "(None)");
if (!fw) {
/* Again, we'll use the existing loaded firmware. */
vpmoct_set_defaults(vpm);
vpmoct_load_complete(work, true);
return;
}
if (!is_valid_vpmoct_firmware(fw)) {
dev_warn(vpm->dev,
"%s is invalid. Please reinstall.\n",
FIRMWARE_NAME);
/* Just use the old version of the fimware. */
vpmoct_release_firmware(fw);
vpmoct_set_defaults(vpm);
vpmoct_load_complete(work, true);
return;
}
if (vpm->minor == header->minor &&
vpm->major == header->major) {
/* Proper version is running */
vpmoct_release_firmware(fw);
vpmoct_set_defaults(vpm);
vpmoct_load_complete(work, true);
return;
} else {
/* Incorrect version of application code is
* loaded. Reset to bootloader mode */
if (vpmoct_switch_to_boot(vpm))
goto error;
}
}
if (!fw) {
vpmoct_load_complete(work, false);
return;
} else if (!is_valid_vpmoct_firmware(fw)) {
dev_warn(vpm->dev,
"%s is invalid. Please reinstall.\n", FIRMWARE_NAME);
goto error;
}
dev_info(vpm->dev, "vpmoct: Uploading firmware, v%d.%d. This can "\
"take up to 1 minute\n",
header->major, header->minor);
if (vpmoct_erase_flash(vpm))
goto error;
if (vpmoct_send_firmware_header(vpm, fw))
goto error;
if (vpmoct_send_firmware_body(vpm, fw))
goto error;
if (vpmoct_check_firmware_crc(vpm, fw->size-VPMOCT_FIRM_HEADER_LEN*2,
header->major, header->minor))
goto error;
vpmoct_release_firmware(fw);
vpmoct_set_defaults(vpm);
vpmoct_load_complete(work, true);
return;
error:
dev_info(vpm->dev, "Unable to load firmware\n");
vpmoct_release_firmware(fw);
/* TODO: Should we disable module if the firmware doesn't load? */
vpmoct_load_complete(work, false);
return;
}
struct vpmoct *vpmoct_alloc(void)
{
struct vpmoct *vpm;
vpm = kzalloc(sizeof(*vpm), GFP_KERNEL);
if (!vpm)
return NULL;
spin_lock_init(&vpm->list_lock);
INIT_LIST_HEAD(&vpm->pending_list);
INIT_LIST_HEAD(&vpm->active_list);
mutex_init(&vpm->mutex);
return vpm;
}
EXPORT_SYMBOL(vpmoct_alloc);
void vpmoct_free(struct vpmoct *vpm)
{
unsigned long flags;
struct vpmoct_cmd *cmd;
LIST_HEAD(list);
if (!vpm)
return;
spin_lock_irqsave(&vpm->list_lock, flags);
list_splice(&vpm->active_list, &list);
list_splice(&vpm->pending_list, &list);
spin_unlock_irqrestore(&vpm->list_lock, flags);
while (!list_empty(&list)) {
cmd = list_entry(list.next, struct vpmoct_cmd, node);
list_del(&cmd->node);
kfree(cmd);
}
kfree(vpm);
}
EXPORT_SYMBOL(vpmoct_free);
/**
* vpmoct_init - Check for / initialize VPMOCT032 module.
* @vpm: struct vpmoct allocated with vpmoct_alloc
* @load_complete_fn: Function to call when the load is complete.
*
* Check to see if there is a VPMOCT module installed. If there appears to be
* one return 0 and perform any necessary setup in the background. The
* load_complete function will be called in a system global workqueue when the
* initialization is complete.
*
* Must be called in process context.
*/
int vpmoct_init(struct vpmoct *vpm, load_complete_func_t load_complete)
{
struct vpmoct_load_work *work;
if (!vpm || !vpm->dev || !load_complete)
return -EINVAL;
if (vpmoct_resync(vpm)) {
load_complete(vpm->dev, false);
return -ENODEV;
}
vpm->mode = vpmoct_get_mode(vpm);
if (UNKNOWN == vpm->mode) {
load_complete(vpm->dev, false);
return -ENODEV;
}
work = kzalloc(sizeof(*work), GFP_KERNEL);
if (!work) {
load_complete(vpm->dev, false);
return -ENOMEM;
}
work->wq = create_singlethread_workqueue("vpmoct");
if (!work->wq) {
kfree(work);
load_complete(vpm->dev, false);
return -ENOMEM;
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&work->work, vpmoct_load_flash, work);
#else
INIT_WORK(&work->work, vpmoct_load_flash);
#endif
work->vpm = vpm;
work->load_complete = load_complete;
queue_work(work->wq, &work->work);
return 0;
}
EXPORT_SYMBOL(vpmoct_init);
static void
vpmoct_set_companding(struct vpmoct *vpm, int channo, int companding)
{
u32 new_companding;
bool do_update = false;
mutex_lock(&vpm->mutex);
new_companding = (DAHDI_LAW_MULAW == companding) ?
(vpm->companding & ~(1 << channo)) :
(vpm->companding | (1 << channo));
if (vpm->companding != new_companding) {
vpm->companding = new_companding;
if (!vpm->companding_update_active) {
do_update = true;
vpm->companding_update_active = 1;
}
}
mutex_unlock(&vpm->mutex);
while (do_update) {
u32 update;
vpmoct_write_dword(vpm, 0x40, new_companding);
update = vpmoct_read_dword(vpm, 0x40);
WARN_ON(new_companding != update);
mutex_lock(&vpm->mutex);
if (vpm->companding != new_companding) {
new_companding = vpm->companding;
} else {
vpm->companding_update_active = 0;
do_update = false;
}
mutex_unlock(&vpm->mutex);
}
}
/**
* vpmoct_echo_update - Enable / Disable the VPMOCT032 echocan state
* @vpm: The echocan to operate on.
* @channo: Which echocan timeslot to enable / disable.
* @echo_on: Whether we're turning the echocan on or off.
*
* When this function returns, the echocan is scheduled to be enabled or
* disabled at some point in the near future.
*
* Must be called in process context.
*
*/
static void vpmoct_echo_update(struct vpmoct *vpm, int channo, bool echo_on)
{
u32 echo;
unsigned long timeout;
bool do_update = false;
mutex_lock(&vpm->mutex);
echo = (echo_on) ? (vpm->echo | (1 << channo)) :
(vpm->echo & ~(1 << channo));
if (vpm->echo != echo) {
vpm->echo = echo;
if (!vpm->echo_update_active) {
do_update = true;
vpm->echo_update_active = 1;
}
}
mutex_unlock(&vpm->mutex);
timeout = jiffies + 2*HZ;
while (do_update) {
u32 new;
vpmoct_write_dword(vpm, 0x30, echo);
new = vpmoct_read_dword(vpm, 0x10);
mutex_lock(&vpm->mutex);
if (((vpm->echo != echo) || (new != echo)) &&
time_before(jiffies, timeout)) {
echo = vpm->echo;
} else {
vpm->echo_update_active = 0;
do_update = false;
}
mutex_unlock(&vpm->mutex);
}
if (!time_before(jiffies, timeout))
dev_warn(vpm->dev, "vpmoct: Updating echo state timed out.\n");
}
int vpmoct_echocan_create(struct vpmoct *vpm, int channo, int companding)
{
vpmoct_set_companding(vpm, channo, companding);
vpmoct_echo_update(vpm, channo, true);
return 0;
}
EXPORT_SYMBOL(vpmoct_echocan_create);
void vpmoct_echocan_free(struct vpmoct *vpm, int channo)
{
vpmoct_echo_update(vpm, channo, false);
}
EXPORT_SYMBOL(vpmoct_echocan_free);
/* Enable a vpm debugging mode where the pre-echo-canceled audio
* stream is physically output on timeslot 24.
*/
int vpmoct_preecho_enable(struct vpmoct *vpm, const int channo)
{
int ret;
mutex_lock(&vpm->mutex);
if (!vpm->preecho_enabled) {
vpm->preecho_enabled = 1;
vpm->preecho_timeslot = channo;
vpmoct_write_dword(vpm, 0x74, channo);
/* Begin pre-echo stream on timeslot 24 */
vpmoct_write_byte(vpm, 0x71, 0x0a);
ret = 0;
} else {
ret = -EBUSY;
}
mutex_unlock(&vpm->mutex);
return ret;
}
EXPORT_SYMBOL(vpmoct_preecho_enable);
int vpmoct_preecho_disable(struct vpmoct *vpm, const int channo)
{
int ret;
mutex_lock(&vpm->mutex);
if (!vpm->preecho_enabled) {
ret = 0;
} else if (channo == vpm->preecho_timeslot) {
vpm->preecho_enabled = 0;
/* Disable pre-echo stream by loading in a non-existing
* channel number */
vpmoct_write_byte(vpm, 0x74, 0xff);
/* Stop pre-echo stream on timeslot 24 */
vpmoct_write_byte(vpm, 0x71, 0x0a);
ret = 0;
} else {
ret = -EINVAL;
}
mutex_unlock(&vpm->mutex);
return ret;
}
EXPORT_SYMBOL(vpmoct_preecho_disable);