dahdi-linux/drivers/dahdi/wctc4xxp/base.c

3810 lines
97 KiB
C
Raw Normal View History

/* Wildcard TC400B Driver
*
* Copyright (C) 2006-2012, Digium, Inc.
*
* All rights reserved.
*
*/
/*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2 as published by the
* Free Software Foundation. See the LICENSE file included with
* this program for more details.
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/kmod.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/moduleparam.h>
#include <linux/firmware.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/udp.h>
#include <linux/etherdevice.h>
#include <linux/timer.h>
#include <stdbool.h>
#include "dahdi/kernel.h"
#include <linux/io.h>
/* COMPILE TIME OPTIONS =================================================== */
#define INTERRUPT 0
#define WORKQUEUE 1
#define TASKLET 2
#ifndef DEFERRED_PROCESSING
# define DEFERRED_PROCESSING WORKQUEUE
#endif
#if DEFERRED_PROCESSING == INTERRUPT
# define ALLOC_FLAGS GFP_ATOMIC
#elif DEFERRED_PROCESSING == TASKLET
# define ALLOC_FLAGS GFP_ATOMIC
#else
# define ALLOC_FLAGS GFP_KERNEL
#endif
#define WARN_ALWAYS() WARN_ON(1)
#define DTE_DEBUG(_dbgmask, _fmt, _args...) \
if ((debug & _dbgmask) == (_dbgmask)) { \
dev_info(&(wc)->pdev->dev, _fmt, ## _args); \
} \
/* define CONFIG_WCTC4XXP_POLLING to operate in a pure polling mode. This is
* was placed in as a debugging tool for a particluar system that wasn't
* routing the interrupt properly. Therefore it is off by default and the
* driver must be recompiled to enable it. */
#undef CONFIG_WCTC4XXP_POLLING
/* The total number of active channels over which the driver will start polling
* the card every 10 ms. */
#define POLLING_CALL_THRESHOLD 40
#define INVALID 999 /* Used to mark invalid channels, commands, etc.. */
#define MAX_CHANNEL_PACKETS 5
#define G729_LENGTH 20
#define G723_LENGTH 30
#define G729_SAMPLES 160 /* G.729 */
#define G723_SAMPLES 240 /* G.723.1 */
#define G729_BYTES 20 /* G.729 */
#define G723_6K_BYTES 24 /* G.723.1 at 6.3kb/s */
#define G723_5K_BYTES 20 /* G.723.1 at 5.3kb/s */
#define G723_SID_BYTES 4 /* G.723.1 SID frame */
#define MAX_CAPTURED_PACKETS 5000
/* The following bit fields are used to set the various debug levels. */
#define DTE_DEBUG_GENERAL (1 << 0) /* 1 */
#define DTE_DEBUG_CHANNEL_SETUP (1 << 1) /* 2 */
#define DTE_DEBUG_RTP_TX (1 << 2) /* 4 */
#define DTE_DEBUG_RTP_RX (1 << 3) /* 8 */
#define DTE_DEBUG_RX_TIMEOUT (1 << 4) /* 16 */
#define DTE_DEBUG_NETWORK_IF (1 << 5) /* 32 */
#define DTE_DEBUG_NETWORK_EARLY (1 << 6) /* 64 */
static int debug;
static char *mode;
static spinlock_t wctc4xxp_list_lock;
static struct list_head wctc4xxp_list;
#define ETH_P_CSM_ENCAPS 0x889B
struct rtphdr {
#if defined(__LITTLE_ENDIAN_BITFIELD)
__u8 csrc_count:4;
__u8 extension:1;
__u8 padding:1;
__u8 ver:2;
__u8 type:7;
__u8 marker:1;
#elif defined(__BIG_ENDIAN_BITFIELD)
__u8 ver:2;
__u8 padding:1;
__u8 extension:1;
__u8 csrc_count:4;
__u8 marker:1;
__u8 type:7;
#else
#error "Please fix <asm/byteorder.h>"
#endif
__be16 seqno;
__be32 timestamp;
__be32 ssrc;
} __attribute__((packed));
struct rtp_packet {
struct ethhdr ethhdr;
struct iphdr iphdr;
struct udphdr udphdr;
struct rtphdr rtphdr;
__u8 payload[0];
} __attribute__((packed));
/* Ethernet packet type for communication control information to the DTE. */
struct csm_encaps_hdr {
struct ethhdr ethhdr;
/* CSM_ENCAPS HEADER */
__be16 op_code;
__u8 seq_num;
__u8 control;
__be16 channel;
/* COMMON PART OF PAYLOAD HEADER */
__u8 length;
__u8 index;
__u8 type;
__u8 class;
__le16 function;
__le16 reserved;
__le16 params[0];
} __attribute__((packed));
#define CONTROL_PACKET_OPCODE 0x0001
/* Control bits */
#define LITTLE_ENDIAN 0x01
#define SUPPRESS_ACK 0x40
#define MESSAGE_PACKET 0x80
#define SUPERVISOR_CHANNEL 0xffff
/* Supervisor function codes */
#define SUPVSR_CREATE_CHANNEL 0x0010
#define MONITOR_LIVE_INDICATION_TYPE 0x75
#define CONFIG_CHANGE_TYPE 0x00
#define CONFIG_CHANNEL_CLASS 0x02
#define CONFIG_DEVICE_CLASS 0x06
/* Individual channel config commands */
#define MAX_FRAME_SIZE 1518
#define SFRAME_SIZE MAX_FRAME_SIZE
#define DRING_SIZE (1 << 7) /* Must be a power of two */
#define DRING_MASK (DRING_SIZE-1)
#define MIN_PACKET_LEN 64
/* Transcoder buffer (tcb) */
struct tcb {
void *data;
struct list_head node;
unsigned long timeout;
unsigned long retries;
/* NOTE: these flags aren't bit fields because some of the flags are
* combinations of the other ones. */
#define DO_NOT_AUTO_FREE (1 << 0)
#define TX_COMPLETE (1 << 1)
#define DO_NOT_CAPTURE (1 << 2)
#define __WAIT_FOR_ACK (1 << 3)
#define __WAIT_FOR_RESPONSE (1 << 4)
#define DTE_CMD_TIMEOUT (1 << 5)
#define WAIT_FOR_ACK (__WAIT_FOR_ACK | DO_NOT_AUTO_FREE)
#define WAIT_FOR_RESPONSE (__WAIT_FOR_RESPONSE | DO_NOT_AUTO_FREE)
unsigned long flags;
struct tcb *response;
struct completion complete;
/* The number of bytes available in data. */
int data_len;
spinlock_t lock;
};
static inline const struct csm_encaps_hdr *
response_header(struct tcb *cmd)
{
BUG_ON(!cmd->response);
return (const struct csm_encaps_hdr *)(cmd)->response->data;
}
static inline void
initialize_cmd(struct tcb *cmd, unsigned long cmd_flags)
{
INIT_LIST_HEAD(&cmd->node);
init_completion(&cmd->complete);
cmd->flags = cmd_flags;
spin_lock_init(&cmd->lock);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
/*! Used to allocate commands to submit to the dte. */
kmem_cache_t *cmd_cache;
#else
/*! Used to allocate commands to submit to the dte. */
static struct kmem_cache *cmd_cache;
#endif
static inline struct tcb *
__alloc_cmd(size_t size, gfp_t alloc_flags, unsigned long cmd_flags)
{
struct tcb *cmd;
if (unlikely(size > SFRAME_SIZE))
return NULL;
if (size < MIN_PACKET_LEN)
size = MIN_PACKET_LEN;
cmd = kmem_cache_alloc(cmd_cache, alloc_flags);
if (likely(cmd)) {
memset(cmd, 0, sizeof(*cmd));
cmd->data = kzalloc(size, alloc_flags);
if (unlikely(!cmd->data)) {
kmem_cache_free(cmd_cache, cmd);
return NULL;
}
cmd->data_len = size;
initialize_cmd(cmd, cmd_flags);
}
return cmd;
}
static struct tcb *
alloc_cmd(size_t size)
{
return __alloc_cmd(size, GFP_KERNEL, 0);
}
static void
__free_cmd(struct tcb *cmd)
{
if (cmd)
kfree(cmd->data);
kmem_cache_free(cmd_cache, cmd);
return;
}
static void
free_cmd(struct tcb *cmd)
{
if (cmd->response)
__free_cmd(cmd->response);
__free_cmd(cmd);
}
struct channel_stats {
atomic_t packets_sent;
atomic_t packets_received;
};
struct channel_pvt {
spinlock_t lock; /* Lock for this structure */
struct wcdte *wc;
u16 seqno;
u8 cmd_seqno;
u8 ssrc;
u16 timeslot_in_num; /* DTE timeslot to receive from */
u16 timeslot_out_num; /* DTE timeslot to send data to */
u16 chan_in_num; /* DTE channel to receive from */
u16 chan_out_num; /* DTE channel to send data to */
u32 timestamp;
struct {
u8 encoder:1; /* If we're an encoder */
};
struct channel_stats stats;
struct list_head rx_queue; /* Transcoded packets for this channel. */
};
struct wcdte {
char board_name[40];
const char *variety;
int pos;
struct list_head node;
spinlock_t reglock;
wait_queue_head_t waitq;
struct semaphore chansem;
#define DTE_READY 1
#define DTE_SHUTDOWN 2
#define DTE_POLLING 3
unsigned long flags;
/* This is a device-global list of commands that are waiting to be
* transmited (and did not fit on the transmit descriptor ring) */
spinlock_t cmd_list_lock;
struct list_head cmd_list;
struct list_head waiting_for_response_list;
spinlock_t rx_list_lock;
struct list_head rx_list;
spinlock_t rx_lock;
unsigned int seq_num;
int last_rx_seq_num;
unsigned char numchannels;
unsigned char complexname[40];
/* This section contains the members necessary to communicate with the
* physical interface to the transcoding engine. */
struct pci_dev *pdev;
unsigned int intmask;
void __iomem *iobase;
struct wctc4xxp_descriptor_ring *txd;
struct wctc4xxp_descriptor_ring *rxd;
struct dahdi_transcoder *uencode;
struct dahdi_transcoder *udecode;
struct channel_pvt *encoders;
struct channel_pvt *decoders;
#if DEFERRED_PROCESSING == WORKQUEUE
struct work_struct deferred_work;
#endif
/*
* This section contains the members necessary for exporting the
* network interface to the host system. This is only used for
* debugging purposes.
*
*/
struct sk_buff_head captured_packets;
struct net_device *netdev;
struct net_device_stats net_stats;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24)
struct napi_struct napi;
#endif
struct timer_list watchdog;
atomic_t open_channels;
struct timer_list polling;
#if HZ > 100
unsigned long jiffies_at_last_poll;
#endif
};
struct wcdte_netdev_priv {
struct wcdte *wc;
};
static inline struct wcdte *
wcdte_from_netdev(struct net_device *netdev)
{
struct wcdte_netdev_priv *priv;
priv = netdev_priv(netdev);
return priv->wc;
}
static inline void wctc4xxp_set_ready(struct wcdte *wc)
{
set_bit(DTE_READY, &wc->flags);
}
static inline int wctc4xxp_is_ready(struct wcdte *wc)
{
return test_bit(DTE_READY, &wc->flags);
}
#define DTE_FORMAT_ULAW 0x00
#define DTE_FORMAT_G723_1 0x04
#define DTE_FORMAT_ALAW 0x08
#define DTE_FORMAT_G729A 0x12
#define DTE_FORMAT_UNDEF 0xFF
static inline u8 wctc4xxp_dahdifmt_to_dtefmt(unsigned int fmt)
{
u8 pt;
switch (fmt) {
case DAHDI_FORMAT_G723_1:
pt = DTE_FORMAT_G723_1;
break;
case DAHDI_FORMAT_ULAW:
pt = DTE_FORMAT_ULAW;
break;
case DAHDI_FORMAT_ALAW:
pt = DTE_FORMAT_ALAW;
break;
case DAHDI_FORMAT_G729A:
pt = DTE_FORMAT_G729A;
break;
default:
pt = DTE_FORMAT_UNDEF;
break;
}
return pt;
}
static struct sk_buff *
tcb_to_skb(struct net_device *netdev, const struct tcb *cmd)
{
struct sk_buff *skb;
skb = alloc_skb(cmd->data_len, in_atomic() ? GFP_ATOMIC : GFP_KERNEL);
if (skb) {
skb->dev = netdev;
skb_put(skb, cmd->data_len);
memcpy(skb->data, cmd->data, cmd->data_len);
skb->protocol = eth_type_trans(skb, netdev);
}
return skb;
}
/**
* wctc4xxp_skb_to_cmd - Convert a socket buffer (skb) to a tcb
* @wc: The transcoder that we're going to send this command to.
* @skb: socket buffer to convert.
*
*/
static struct tcb *
wctc4xxp_skb_to_cmd(struct wcdte *wc, const struct sk_buff *skb)
{
const gfp_t alloc_flags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
struct tcb *cmd;
cmd = __alloc_cmd(skb->len, alloc_flags, 0);
if (cmd) {
int res;
cmd->data_len = skb->len;
res = skb_copy_bits(skb, 0, cmd->data, cmd->data_len);
if (res) {
dev_warn(&wc->pdev->dev,
"Failed call to skb_copy_bits.\n");
free_cmd(cmd);
cmd = NULL;
}
}
return cmd;
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 2, 0)
static void
wctc4xxp_net_set_multi(struct net_device *netdev)
{
struct wcdte *wc = wcdte_from_netdev(netdev);
DTE_DEBUG(DTE_DEBUG_GENERAL, "%s promiscuity:%d\n",
__func__, netdev->promiscuity);
}
#else
static void
wctc4xxp_set_rx_mode(struct net_device *netdev)
{
struct wcdte *wc = wcdte_from_netdev(netdev);
DTE_DEBUG(DTE_DEBUG_GENERAL, "%s promiscuity:%d\n",
__func__, netdev->promiscuity);
}
#endif
static int
wctc4xxp_net_up(struct net_device *netdev)
{
struct wcdte *wc = wcdte_from_netdev(netdev);
DTE_DEBUG(DTE_DEBUG_GENERAL, "%s\n", __func__);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)
netif_poll_enable(netdev);
#else
napi_enable(&wc->napi);
#endif
return 0;
}
static int
wctc4xxp_net_down(struct net_device *netdev)
{
struct wcdte *wc = wcdte_from_netdev(netdev);
DTE_DEBUG(DTE_DEBUG_GENERAL, "%s\n", __func__);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)
netif_poll_disable(netdev);
#else
napi_disable(&wc->napi);
#endif
return 0;
}
static void wctc4xxp_transmit_cmd(struct wcdte *, struct tcb *);
static int
wctc4xxp_net_hard_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct wcdte *wc = wcdte_from_netdev(netdev);
struct tcb *cmd;
/* We set DO_NOT_CAPTURE because this packet was already captured by
* in code higher up in the networking stack. We don't want to
* capture it twice.
*/
cmd = wctc4xxp_skb_to_cmd(wc, skb);
if (cmd) {
cmd->flags |= DO_NOT_CAPTURE;
wctc4xxp_transmit_cmd(wc, cmd);
}
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
static int
wctc4xxp_net_receive(struct wcdte *wc, int max)
{
int count = 0;
struct sk_buff *skb;
WARN_ON(0 == max);
while ((skb = skb_dequeue(&wc->captured_packets))) {
netif_receive_skb(skb);
if (++count >= max)
break;
}
return count;
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)
static int
wctc4xxp_poll(struct net_device *netdev, int *budget)
{
struct wcdte *wc = wcdte_from_netdev(netdev);
int count = 0;
int quota = min(netdev->quota, *budget);
count = wctc4xxp_net_receive(wc, quota);
*budget -= count;
netdev->quota -= count;
if (!skb_queue_len(&wc->captured_packets)) {
netif_rx_complete(netdev);
return 0;
} else {
return -1;
}
}
#else
static int
wctc4xxp_poll(struct napi_struct *napi, int budget)
{
struct wcdte *wc = container_of(napi, struct wcdte, napi);
int count;
count = wctc4xxp_net_receive(wc, budget);
if (!skb_queue_len(&wc->captured_packets)) {
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 29)
netif_rx_complete(wc->netdev, &wc->napi);
#elif LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 30)
netif_rx_complete(&wc->napi);
#else
napi_complete(&wc->napi);
#endif
}
return count;
}
#endif
static struct net_device_stats *
wctc4xxp_net_get_stats(struct net_device *netdev)
{
struct wcdte *wc = wcdte_from_netdev(netdev);
return &wc->net_stats;
}
/* Wait until this device is put into promiscuous mode, or we timeout. */
static void
wctc4xxp_net_waitfor_promiscuous(struct wcdte *wc)
{
unsigned int seconds = 15;
unsigned long start = jiffies;
struct net_device *netdev = wc->netdev;
dev_info(&wc->pdev->dev,
"Waiting %d seconds for adapter to be placed in " \
"promiscuous mode for early trace.\n", seconds);
while (!netdev->promiscuity) {
if (signal_pending(current)) {
dev_info(&wc->pdev->dev,
"Aborting wait due to signal.\n");
break;
}
msleep(100);
if (time_after(jiffies, start + (seconds * HZ))) {
dev_info(&wc->pdev->dev,
"Aborting wait due to timeout.\n");
break;
}
}
}
#ifdef HAVE_NET_DEVICE_OPS
static const struct net_device_ops wctc4xxp_netdev_ops = {
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 2, 0)
.ndo_set_multicast_list = &wctc4xxp_net_set_multi,
#else
.ndo_set_rx_mode = &wctc4xxp_set_rx_mode,
#endif
.ndo_open = &wctc4xxp_net_up,
.ndo_stop = &wctc4xxp_net_down,
.ndo_start_xmit = &wctc4xxp_net_hard_start_xmit,
.ndo_get_stats = &wctc4xxp_net_get_stats,
};
#endif
/**
* wctc4xxp_net_register - Register a new network interface.
* @wc: transcoder card to register the interface for.
*
* The network interface is primarily used for debugging in order to watch the
* traffic between the transcoder and the host.
*
*/
static int
wctc4xxp_net_register(struct wcdte *wc)
{
int res;
struct net_device *netdev;
struct wcdte_netdev_priv *priv;
const char our_mac[] = { 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};
netdev = alloc_netdev(sizeof(*priv), wc->board_name, ether_setup);
if (!netdev)
return -ENOMEM;
priv = netdev_priv(netdev);
priv->wc = wc;
memcpy(netdev->dev_addr, our_mac, sizeof(our_mac));
# ifdef HAVE_NET_DEVICE_OPS
netdev->netdev_ops = &wctc4xxp_netdev_ops;
# else
netdev->set_multicast_list = &wctc4xxp_net_set_multi;
netdev->open = &wctc4xxp_net_up;
netdev->stop = &wctc4xxp_net_down;
netdev->hard_start_xmit = &wctc4xxp_net_hard_start_xmit;
netdev->get_stats = &wctc4xxp_net_get_stats;
# endif
netdev->promiscuity = 0;
netdev->flags |= IFF_NOARP;
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)
netdev->poll = &wctc4xxp_poll;
netdev->weight = 64;
# else
netif_napi_add(netdev, &wc->napi, &wctc4xxp_poll, 64);
# endif
res = register_netdev(netdev);
if (res) {
dev_warn(&wc->pdev->dev,
"Failed to register network device %s.\n",
wc->board_name);
goto error_sw;
}
wc->netdev = netdev;
skb_queue_head_init(&wc->captured_packets);
if (debug & DTE_DEBUG_NETWORK_EARLY)
wctc4xxp_net_waitfor_promiscuous(wc);
dev_info(&wc->pdev->dev,
"Created network device %s for debug.\n", wc->board_name);
return 0;
error_sw:
if (netdev)
free_netdev(netdev);
return res;
}
static void
wctc4xxp_net_unregister(struct wcdte *wc)
{
struct sk_buff *skb;
if (!wc->netdev)
return;
unregister_netdev(wc->netdev);
while ((skb = skb_dequeue(&wc->captured_packets)))
kfree_skb(skb);
free_netdev(wc->netdev);
wc->netdev = NULL;
}
/**
* wctc4xxp_net_capture_cmd - Send a tcb to the network stack.
* @wc: transcoder that received the command.
* @cmd: command to send to network stack.
*
*/
static void
wctc4xxp_net_capture_cmd(struct wcdte *wc, const struct tcb *cmd)
{
struct sk_buff *skb;
struct net_device *netdev = wc->netdev;
if (!netdev)
return;
/* No need to capture if there isn't anyone listening. */
if (!(netdev->flags & IFF_UP))
return;
if (skb_queue_len(&wc->captured_packets) > MAX_CAPTURED_PACKETS) {
WARN_ON_ONCE(1);
return;
}
skb = tcb_to_skb(netdev, cmd);
if (!skb)
return;
skb_queue_tail(&wc->captured_packets, skb);
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 24)
netif_rx_schedule(netdev);
# elif LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 29)
netif_rx_schedule(netdev, &wc->napi);
# elif LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 30)
netif_rx_schedule(&wc->napi);
# else
napi_schedule(&wc->napi);
# endif
return;
}
/*! In-memory structure shared by the host and the adapter. */
struct wctc4xxp_descriptor {
__le32 des0;
__le32 des1;
__le32 buffer1;
__le32 container; /* Unused */
} __attribute__((packed));
struct wctc4xxp_descriptor_ring {
/* Pointer to an array of descriptors to give to hardware. */
struct wctc4xxp_descriptor *desc;
/* Read completed buffers from the head. */
unsigned int head;
/* Write ready buffers to the tail. */
unsigned int tail;
/* Array to save the kernel virtual address of pending commands. */
struct tcb *pending[DRING_SIZE];
/* PCI Bus address of the descriptor list. */
dma_addr_t desc_dma;
/*! either DMA_FROM_DEVICE or DMA_TO_DEVICE */
unsigned int direction;
/*! The number of buffers currently submitted to the hardware. */
unsigned int count;
/*! The number of bytes to pad each descriptor for cache alignment. */
unsigned int padding;
/*! Protects this structure from concurrent access. */
spinlock_t lock;
/*! PCI device for the card associated with this ring. */
struct pci_dev *pdev;
};
/**
* wctc4xxp_descriptor - Returns the desriptor at index.
* @dr: The descriptor ring we're using.
* @index: index of the descriptor we want.
*
* We need this function because we do not know what the padding on the
* descriptors will be. Otherwise, we would just use an array.
*/
static inline struct wctc4xxp_descriptor *
wctc4xxp_descriptor(struct wctc4xxp_descriptor_ring *dr, int index)
{
return (struct wctc4xxp_descriptor *)((u8 *)dr->desc +
((sizeof(*dr->desc) + dr->padding) * index));
}
static int
wctc4xxp_initialize_descriptor_ring(struct pci_dev *pdev,
struct wctc4xxp_descriptor_ring *dr, u32 des1, unsigned int direction)
{
int i;
const u32 END_OF_RING = 0x02000000;
u8 cache_line_size = 0;
struct wctc4xxp_descriptor *d;
int add_padding;
BUG_ON(!pdev);
BUG_ON(!dr);
if (pci_read_config_byte(pdev, 0x0c, &cache_line_size))
return -EIO;
memset(dr, 0, sizeof(*dr));
/*
* Add some padding to each descriptor to ensure that they are
* aligned on host system cache-line boundaries, but only for the
* cache-line sizes that we support.
*
*/
add_padding = (0x08 == cache_line_size) ||
(0x10 == cache_line_size) ||
(0x20 == cache_line_size);
if (add_padding)
dr->padding = (cache_line_size*sizeof(u32)) - sizeof(*d);
dr->desc = pci_alloc_consistent(pdev,
(sizeof(*d)+dr->padding)*DRING_SIZE, &dr->desc_dma);
if (!dr->desc)
return -ENOMEM;
memset(dr->desc, 0, (sizeof(*d) + dr->padding) * DRING_SIZE);
for (i = 0; i < DRING_SIZE; ++i) {
d = wctc4xxp_descriptor(dr, i);
memset(d, 0, sizeof(*d));
d->des1 = cpu_to_le32(des1);
}
d->des1 |= cpu_to_le32(END_OF_RING);
dr->direction = direction;
spin_lock_init(&dr->lock);
dr->pdev = pdev;
return 0;
}
#define OWN_BIT cpu_to_le32(0x80000000)
#define OWNED(_d_) (((_d_)->des0)&OWN_BIT)
#define SET_OWNED(_d_) do { wmb(); (_d_)->des0 |= OWN_BIT; wmb(); } while (0)
static const unsigned int BUFFER1_SIZE_MASK = 0x7ff;
static int
wctc4xxp_submit(struct wctc4xxp_descriptor_ring *dr, struct tcb *c)
{
volatile struct wctc4xxp_descriptor *d;
unsigned int len;
unsigned long flags;
WARN_ON(!c);
len = (c->data_len < MIN_PACKET_LEN) ? MIN_PACKET_LEN : c->data_len;
if (c->data_len > MAX_FRAME_SIZE) {
WARN_ON_ONCE(!"Invalid command length passed\n");
c->data_len = MAX_FRAME_SIZE;
}
spin_lock_irqsave(&dr->lock, flags);
d = wctc4xxp_descriptor(dr, dr->tail);
WARN_ON(!d);
if (d->buffer1) {
spin_unlock_irqrestore(&dr->lock, flags);
/* Do not overwrite a buffer that is still in progress. */
return -EBUSY;
}
d->des1 &= cpu_to_le32(~(BUFFER1_SIZE_MASK));
d->des1 |= cpu_to_le32(len & BUFFER1_SIZE_MASK);
d->buffer1 = cpu_to_le32(pci_map_single(dr->pdev, c->data,
SFRAME_SIZE, dr->direction));
SET_OWNED(d); /* That's it until the hardware is done with it. */
dr->pending[dr->tail] = c;
dr->tail = (dr->tail + 1) & DRING_MASK;
++dr->count;
spin_unlock_irqrestore(&dr->lock, flags);
return 0;
}
static inline struct tcb*
wctc4xxp_retrieve(struct wctc4xxp_descriptor_ring *dr)
{
volatile struct wctc4xxp_descriptor *d;
struct tcb *c;
unsigned int head = dr->head;
unsigned long flags;
spin_lock_irqsave(&dr->lock, flags);
d = wctc4xxp_descriptor(dr, head);
if (d->buffer1 && !OWNED(d)) {
pci_unmap_single(dr->pdev, le32_to_cpu(d->buffer1),
SFRAME_SIZE, dr->direction);
c = dr->pending[head];
WARN_ON(!c);
dr->head = (++head) & DRING_MASK;
d->buffer1 = 0;
--dr->count;
WARN_ON(!c);
c->data_len = (le32_to_cpu(d->des0) >> 16) & BUFFER1_SIZE_MASK;
WARN_ON(c->data_len > SFRAME_SIZE);
} else {
c = NULL;
}
spin_unlock_irqrestore(&dr->lock, flags);
return c;
}
static inline int wctc4xxp_getcount(struct wctc4xxp_descriptor_ring *dr)
{
int count;
unsigned long flags;
spin_lock_irqsave(&dr->lock, flags);
count = dr->count;
spin_unlock_irqrestore(&dr->lock, flags);
return count;
}
static inline void
__wctc4xxp_setctl(struct wcdte *wc, unsigned int addr, unsigned int val)
{
writel(val, wc->iobase + addr);
readl(wc->iobase + addr);
}
static inline unsigned int
__wctc4xxp_getctl(struct wcdte *wc, unsigned int addr)
{
return readl(wc->iobase + addr);
}
static inline void
wctc4xxp_setctl(struct wcdte *wc, unsigned int addr, unsigned int val)
{
unsigned long flags;
spin_lock_irqsave(&wc->reglock, flags);
__wctc4xxp_setctl(wc, addr, val);
spin_unlock_irqrestore(&wc->reglock, flags);
}
static inline void
wctc4xxp_receive_demand_poll(struct wcdte *wc)
{
__wctc4xxp_setctl(wc, 0x0010, 0x00000000);
}
static inline void
wctc4xxp_transmit_demand_poll(struct wcdte *wc)
{
return;
# if 0
__wctc4xxp_setctl(wc, 0x0008, 0x00000000);
/* \todo Investigate why this register needs to be written twice in
* order to get it to poll reliably. So far, most of the problems
* I've seen with timeouts had more to do with an untransmitted
* packet sitting in the outbound descriptor list as opposed to any
* problem with the dte firmware.
*/
__wctc4xxp_setctl(wc, 0x0008, 0x00000000);
#endif
}
/* Returns the size, in bytes, of a CSM_ENCAPS packet, given the number of
* parameters used. */
#define SIZE_WITH_N_PARAMETERS(__n) (sizeof(struct csm_encaps_hdr) + \
((__n) * (sizeof(u16))))
/* There are 20 bytes in the ethernet header and the common CSM_ENCAPS header
* that we don't want in the length of the actual CSM_ENCAPS command */
#define LENGTH_WITH_N_PARAMETERS(__n) (SIZE_WITH_N_PARAMETERS(__n) - 20)
static const u8 dst_mac[6] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55};
static const u8 src_mac[6] = {0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF};
static int wctc4xxp_transmit_cmd_and_wait(struct wcdte *wc, struct tcb *cmd);
static void
setup_common_header(struct wcdte *wc, struct csm_encaps_hdr *hdr)
{
memcpy(hdr->ethhdr.h_dest, dst_mac, sizeof(dst_mac));
memcpy(hdr->ethhdr.h_source, src_mac, sizeof(src_mac));
hdr->ethhdr.h_proto = cpu_to_be16(ETH_P_CSM_ENCAPS);
}
static void
setup_supervisor_header(struct wcdte *wc, struct csm_encaps_hdr *hdr)
{
setup_common_header(wc, hdr);
hdr->op_code = cpu_to_be16(CONTROL_PACKET_OPCODE);
hdr->control = LITTLE_ENDIAN;
hdr->seq_num = (wc->seq_num++)&0xf;
hdr->channel = cpu_to_be16(SUPERVISOR_CHANNEL);
}
static void
setup_channel_header(struct channel_pvt *pvt, struct csm_encaps_hdr *hdr)
{
setup_common_header(pvt->wc, hdr);
hdr->op_code = cpu_to_be16(CONTROL_PACKET_OPCODE);
hdr->seq_num = (pvt->cmd_seqno++)&0xf;
hdr->channel = cpu_to_be16(pvt->chan_in_num);
}
static void
create_supervisor_cmd(struct wcdte *wc, struct tcb *cmd, u8 type, u8 class,
u16 function, const u16 *parameters, const int num_parameters)
{
struct csm_encaps_hdr *hdr = cmd->data;
int i;
if (cmd->response) {
free_cmd(cmd->response);
cmd->response = NULL;
}
setup_supervisor_header(wc, hdr);
hdr->length = LENGTH_WITH_N_PARAMETERS(num_parameters);
hdr->index = 0;
hdr->type = type;
hdr->class = class;
hdr->function = cpu_to_le16(function);
hdr->reserved = 0;
for (i = 0; i < num_parameters; ++i)
hdr->params[i] = cpu_to_le16(parameters[i]);
cmd->flags = WAIT_FOR_RESPONSE;
cmd->data_len = SIZE_WITH_N_PARAMETERS(num_parameters);
}
static void
create_channel_cmd(struct channel_pvt *pvt, struct tcb *cmd, u8 type, u8 class,
u16 function, const u16 *parameters, int num_parameters)
{
int i;
struct csm_encaps_hdr *hdr = cmd->data;
if (cmd->response) {
free_cmd(cmd->response);
cmd->response = NULL;
}
setup_channel_header(pvt, hdr);
hdr->length = LENGTH_WITH_N_PARAMETERS(num_parameters);
hdr->index = 0;
hdr->type = type;
hdr->class = class;
hdr->function = cpu_to_le16(function);
hdr->reserved = 0;
for (i = 0; i < num_parameters; ++i)
hdr->params[i] = cpu_to_le16(parameters[i]);
cmd->flags = WAIT_FOR_RESPONSE;
cmd->data_len = SIZE_WITH_N_PARAMETERS(num_parameters);
}
static int
send_create_channel_cmd(struct wcdte *wc, struct tcb *cmd, u16 timeslot,
u16 *channel_number)
{
int res;
const u16 parameters[] = {0x0002, timeslot};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, SUPVSR_CREATE_CHANNEL,
parameters, ARRAY_SIZE(parameters));
res = wctc4xxp_transmit_cmd_and_wait(wc, cmd);
if (res)
return res;
if (0x0000 != response_header(cmd)->params[0]) {
if (printk_ratelimit()) {
dev_warn(&wc->pdev->dev,
"Failed to create channel in timeslot " \
"%d. Response from DTE was (%04x).\n",
timeslot, response_header(cmd)->params[0]);
}
free_cmd(cmd->response);
cmd->response = NULL;
return -EIO;
}
*channel_number = le16_to_cpu(response_header(cmd)->params[1]);
free_cmd(cmd->response);
cmd->response = NULL;
return 0;
}
static int
send_set_arm_clk_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0x012c, 0x0000};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0411, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_set_spu_clk_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0x012c, 0x0000};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0412, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_tdm_select_bus_mode_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0x0004};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0417, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_set_eth_header_cmd(struct wcdte *wc, struct tcb *cmd,
const u8 *host_mac, const u8 *assigned_mac)
{
u16 parameters[8];
u16 *part;
parameters[0] = 0x0001;
part = (u16 *)host_mac;
parameters[1] = part[0];
parameters[2] = part[1];
parameters[3] = part[2];
part = (u16 *)assigned_mac;
parameters[4] = part[0];
parameters[5] = part[1];
parameters[6] = part[2];
parameters[7] = 0x0008;
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0100, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_supvsr_setup_tdm_parms(struct wcdte *wc, struct tcb *cmd,
u8 bus_number)
{
const u16 parameters[] = {0x8380, 0x0c00, 0, (bus_number << 2)&0xc};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0407, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_ip_service_config_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0x0200};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0302, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_arp_service_config_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0x0001};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0105, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_icmp_service_config_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0xff01};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0304, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_device_set_country_code_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0x0000};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x041b, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_spu_features_control_cmd(struct wcdte *wc, struct tcb *cmd, u16 options)
{
const u16 parameters[] = {options};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0013, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_tdm_opt_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0x0000};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0435, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
send_destroy_channel_cmd(struct wcdte *wc, struct tcb *cmd, u16 channel)
{
int res;
u16 result;
const u16 parameters[] = {channel};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0011, parameters,
ARRAY_SIZE(parameters));
res = wctc4xxp_transmit_cmd_and_wait(wc, cmd);
if (res)
return res;
/* Let's check the response for any error codes.... */
result = le16_to_cpu(response_header(cmd)->params[0]);
if (0x0000 != result) {
dev_err(&wc->pdev->dev,
"Failed to destroy channel %04d (%04x)\n",
channel, result);
return -EIO;
}
return 0;
}
static int
send_set_ip_hdr_channel_cmd(struct channel_pvt *pvt, struct tcb *cmd)
{
int res;
u16 result;
struct wcdte *wc = pvt->wc;
const u16 parameters[] = {0, 0x0045, 0, 0, 0x0040, 0x1180, 0,
0xa8c0, 0x0309, 0xa8c0, 0x0309,
swab16(pvt->timeslot_out_num + 0x5000),
swab16(pvt->timeslot_in_num + 0x5000),
0, 0};
create_channel_cmd(pvt, cmd, CONFIG_CHANGE_TYPE, CONFIG_CHANNEL_CLASS,
0x9000, parameters, ARRAY_SIZE(parameters));
res = wctc4xxp_transmit_cmd_and_wait(wc, cmd);
if (res)
return res;
/* Let's check the response for any error codes.... */
result = le16_to_cpu(response_header(cmd)->params[0]);
if (0x0000 != result) {
dev_err(&wc->pdev->dev, "Failure in %s (%04x)\n",
__func__, result);
return -EIO;
}
return 0;
}
static int
send_voip_vceopt_cmd(struct channel_pvt *pvt, struct tcb *cmd, u16 length)
{
int res;
u16 result;
const u16 parameters[] = {((length << 8)|0x21), 0x1c00, 0x0004, 0, 0};
struct wcdte *wc = pvt->wc;
create_channel_cmd(pvt, cmd, CONFIG_CHANGE_TYPE, CONFIG_CHANNEL_CLASS,
0x8001, parameters, ARRAY_SIZE(parameters));
res = wctc4xxp_transmit_cmd_and_wait(wc, cmd);
if (res)
return res;
/* Let's check the response for any error codes.... */
result = le16_to_cpu(response_header(cmd)->params[0]);
if (0x0000 != result) {
dev_err(&wc->pdev->dev, "Failure in %s (%04x)\n",
__func__, result);
return -EIO;
}
return 0;
}
static int
send_voip_tonectl_cmd(struct channel_pvt *pvt, struct tcb *cmd)
{
int res;
u16 result;
const u16 parameters[] = {0};
struct wcdte *wc = pvt->wc;
create_channel_cmd(pvt, cmd, CONFIG_CHANGE_TYPE, CONFIG_CHANNEL_CLASS,
0x805b, parameters, ARRAY_SIZE(parameters));
res = wctc4xxp_transmit_cmd_and_wait(wc, cmd);
if (res)
return res;
/* Let's check the response for any error codes.... */
result = le16_to_cpu(response_header(cmd)->params[0]);
if (0x0000 != result) {
dev_err(&wc->pdev->dev, "Failure in %s (%04x)\n",
__func__, result);
return -EIO;
}
return 0;
}
static int
send_voip_dtmfopt_cmd(struct channel_pvt *pvt, struct tcb *cmd)
{
const u16 parameters[] = {0x0008};
create_channel_cmd(pvt, cmd, CONFIG_CHANGE_TYPE, CONFIG_CHANNEL_CLASS,
0x8002, parameters, ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(pvt->wc, cmd);
}
static int
send_voip_indctrl_cmd(struct channel_pvt *pvt, struct tcb *cmd)
{
const u16 parameters[] = {0x0007};
create_channel_cmd(pvt, cmd, CONFIG_CHANGE_TYPE, CONFIG_CHANNEL_CLASS,
0x8084, parameters, ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(pvt->wc, cmd);
}
static int
send_voip_vopena_cmd(struct channel_pvt *pvt, struct tcb *cmd, u8 format)
{
const u16 parameters[] = {1, ((format<<8)|0x80), 0, 0, 0,
0x3412, 0x7856};
create_channel_cmd(pvt, cmd, CONFIG_CHANGE_TYPE, CONFIG_CHANNEL_CLASS,
0x8000, parameters, ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(pvt->wc, cmd);
}
static int
send_voip_vopena_close_cmd(struct channel_pvt *pvt, struct tcb *cmd)
{
int res;
const u16 parameters[] = {0};
create_channel_cmd(pvt, cmd, CONFIG_CHANGE_TYPE, CONFIG_CHANNEL_CLASS,
0x8000, parameters, ARRAY_SIZE(parameters));
res = wctc4xxp_transmit_cmd_and_wait(pvt->wc, cmd);
if (res)
return res;
/* Let's check the response for any error codes.... */
if (0x0000 != response_header(cmd)->params[0]) {
WARN_ON(1);
return -EIO;
}
return 0;
}
static int
send_ip_options_cmd(struct wcdte *wc, struct tcb *cmd)
{
const u16 parameters[] = {0x0002};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x0306, parameters,
ARRAY_SIZE(parameters));
return wctc4xxp_transmit_cmd_and_wait(wc, cmd);
}
static int
_send_trans_connect_cmd(struct wcdte *wc, struct tcb *cmd, u16 enable, u16
encoder_channel, u16 decoder_channel, u16 encoder_format,
u16 decoder_format)
{
int res;
const u16 parameters[] = {enable, encoder_channel, encoder_format,
decoder_channel, decoder_format};
create_supervisor_cmd(wc, cmd, CONFIG_CHANGE_TYPE,
CONFIG_DEVICE_CLASS, 0x9322, parameters,
ARRAY_SIZE(parameters));
res = wctc4xxp_transmit_cmd_and_wait(wc, cmd);
if (res)
return res;
/* Let's check the response for any error codes.... */
if (0x0000 != response_header(cmd)->params[0]) {
WARN_ON(1);
return -EIO;
}
return 0;
}
static int
send_trans_connect_cmd(struct wcdte *wc, struct tcb *cmd, const u16
encoder_channel, const u16 decoder_channel, const u16 encoder_format,
const u16 decoder_format)
{
return _send_trans_connect_cmd(wc, cmd, 1, encoder_channel,
decoder_channel, encoder_format, decoder_format);
}
static int
send_trans_disconnect_cmd(struct wcdte *wc, struct tcb *cmd, const u16
encoder_channel, const u16 decoder_channel, const u16 encoder_format,
const u16 decoder_format)
{
return _send_trans_connect_cmd(wc, cmd, 0, encoder_channel,
decoder_channel, encoder_format, decoder_format);
}
static struct tcb *
wctc4xxp_create_rtp_cmd(struct wcdte *wc, struct dahdi_transcoder_channel *dtc,
size_t inbytes)
{
const struct channel_pvt *cpvt = dtc->pvt;
struct rtp_packet *packet;
struct tcb *cmd;
cmd = alloc_cmd(sizeof(*packet) + inbytes);
if (!cmd)
return NULL;
packet = cmd->data;
BUG_ON(cmd->data_len < sizeof(*packet));
/* setup the ethernet header */
memcpy(packet->ethhdr.h_dest, dst_mac, sizeof(dst_mac));
memcpy(packet->ethhdr.h_source, src_mac, sizeof(src_mac));
packet->ethhdr.h_proto = cpu_to_be16(ETH_P_IP);
/* setup the IP header */
packet->iphdr.ihl = 5;
packet->iphdr.version = 4;
packet->iphdr.tos = 0;
packet->iphdr.tot_len = cpu_to_be16(inbytes+40);
packet->iphdr.id = 0;
packet->iphdr.frag_off = cpu_to_be16(0x4000);
packet->iphdr.ttl = 64;
packet->iphdr.protocol = 0x11; /* UDP */
packet->iphdr.check = 0;
packet->iphdr.saddr = cpu_to_be32(0xc0a80903);
packet->iphdr.daddr = cpu_to_be32(0xc0a80903);
packet->iphdr.check = ip_fast_csum((void *)&packet->iphdr,
packet->iphdr.ihl);
/* setup the UDP header */
packet->udphdr.source = cpu_to_be16(cpvt->timeslot_out_num + 0x5000);
packet->udphdr.dest = cpu_to_be16(cpvt->timeslot_in_num + 0x5000);
packet->udphdr.len = cpu_to_be16(inbytes + sizeof(struct rtphdr) +
sizeof(struct udphdr));
packet->udphdr.check = 0;
/* Setup the RTP header */
packet->rtphdr.ver = 2;
packet->rtphdr.padding = 0;
packet->rtphdr.extension = 0;
packet->rtphdr.csrc_count = 0;
packet->rtphdr.marker = 0;
packet->rtphdr.type = wctc4xxp_dahdifmt_to_dtefmt(dtc->srcfmt);
packet->rtphdr.seqno = cpu_to_be16(cpvt->seqno);
packet->rtphdr.timestamp = cpu_to_be32(cpvt->timestamp);
packet->rtphdr.ssrc = cpu_to_be32(cpvt->ssrc);
WARN_ON(cmd->data_len > SFRAME_SIZE);
return cmd;
}
static void
wctc4xxp_cleanup_descriptor_ring(struct wctc4xxp_descriptor_ring *dr)
{
int i;
struct wctc4xxp_descriptor *d;
if (!dr || !dr->desc)
return;
for (i = 0; i < DRING_SIZE; ++i) {
d = wctc4xxp_descriptor(dr, i);
if (d->buffer1) {
pci_unmap_single(dr->pdev, d->buffer1,
SFRAME_SIZE, dr->direction);
d->buffer1 = 0;
/* Commands will also be sitting on the waiting for
* response list, so we want to make sure to delete
* them from that list as well. */
list_del_init(&(dr->pending[i])->node);
free_cmd(dr->pending[i]);
dr->pending[i] = NULL;
}
}
dr->head = 0;
dr->tail = 0;
dr->count = 0;
pci_free_consistent(dr->pdev, (sizeof(*d)+dr->padding) * DRING_SIZE,
dr->desc, dr->desc_dma);
}
static void wctc4xxp_timeout_all_commands(struct wcdte *wc)
{
struct tcb *cmd;
struct tcb *temp;
unsigned long flags;
LIST_HEAD(local_list);
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_splice_init(&wc->waiting_for_response_list, &local_list);
list_splice_init(&wc->cmd_list, &local_list);
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
list_for_each_entry_safe(cmd, temp, &local_list, node) {
list_del_init(&cmd->node);
if (cmd->flags & DO_NOT_AUTO_FREE) {
cmd->flags |= DTE_CMD_TIMEOUT;
complete(&cmd->complete);
} else {
free_cmd(cmd);
}
}
}
static void wctc4xxp_cleanup_command_list(struct wcdte *wc)
{
struct tcb *cmd;
unsigned long flags;
LIST_HEAD(local_list);
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_splice_init(&wc->cmd_list, &local_list);
list_splice_init(&wc->waiting_for_response_list, &local_list);
list_splice_init(&wc->rx_list, &local_list);
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
while (!list_empty(&local_list)) {
cmd = list_entry(local_list.next, struct tcb, node);
list_del_init(&cmd->node);
free_cmd(cmd);
}
}
/**
* The command list is used to store commands that couldn't fit in the tx
* descriptor list when they were requested.
*/
static void
wctc4xxp_add_to_command_list(struct wcdte *wc, struct tcb *cmd)
{
unsigned long flags;
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_add_tail(&cmd->node, &wc->cmd_list);
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
}
static void
wctc4xxp_add_to_response_list(struct wcdte *wc, struct tcb *cmd)
{
unsigned long flags;
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_add_tail(&cmd->node, &wc->waiting_for_response_list);
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
}
static void
wctc4xxp_remove_from_response_list(struct wcdte *wc, struct tcb *cmd)
{
unsigned long flags;
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_del_init(&cmd->node);
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
}
static void
wctc4xxp_transmit_cmd(struct wcdte *wc, struct tcb *cmd)
{
int res;
/* If we're shutdown all commands will timeout. Just complete the
* command here with the timeout flag */
if (unlikely(test_bit(DTE_SHUTDOWN, &wc->flags))) {
if (cmd->flags & DO_NOT_AUTO_FREE) {
cmd->flags |= DTE_CMD_TIMEOUT;
list_del_init(&cmd->node);
complete(&cmd->complete);
} else {
list_del(&cmd->node);
free_cmd(cmd);
}
return;
}
if (cmd->data_len < MIN_PACKET_LEN) {
memset((u8 *)(cmd->data) + cmd->data_len, 0,
MIN_PACKET_LEN-cmd->data_len);
cmd->data_len = MIN_PACKET_LEN;
}
WARN_ON(cmd->response);
WARN_ON(cmd->flags & TX_COMPLETE);
cmd->timeout = jiffies + HZ/4;
if (cmd->flags & (__WAIT_FOR_ACK | __WAIT_FOR_RESPONSE)) {
if (cmd->flags & __WAIT_FOR_RESPONSE) {
/* We don't need both an ACK and a response. Let's
* tell the DTE not to generate an ACK, and we'll just
* retry if we do not get the response within the
* timeout period. */
struct csm_encaps_hdr *hdr = cmd->data;
hdr->control |= SUPPRESS_ACK;
}
WARN_ON(!list_empty(&cmd->node));
wctc4xxp_add_to_response_list(wc, cmd);
mod_timer(&wc->watchdog, jiffies + HZ/2);
}
if (!(cmd->flags & DO_NOT_CAPTURE))
wctc4xxp_net_capture_cmd(wc, cmd);
res = wctc4xxp_submit(wc->txd, cmd);
if (-EBUSY == res) {
/* Looks like we're out of room in the descriptor
* ring. We'll add this command to the pending list
* and the interrupt service routine will pull from
* this list as it clears up room in the descriptor
* ring. */
wctc4xxp_remove_from_response_list(wc, cmd);
wctc4xxp_add_to_command_list(wc, cmd);
} else if (0 == res) {
wctc4xxp_transmit_demand_poll(wc);
} else {
/* Unknown return value... */
WARN_ON(1);
}
}
static int
wctc4xxp_transmit_cmd_and_wait(struct wcdte *wc, struct tcb *cmd)
{
cmd->flags |= DO_NOT_AUTO_FREE;
wctc4xxp_transmit_cmd(wc, cmd);
wait_for_completion(&cmd->complete);
if (cmd->flags & DTE_CMD_TIMEOUT) {
DTE_DEBUG(DTE_DEBUG_GENERAL, "Timeout waiting for command.\n");
return -EIO;
}
return 0;
}
static int wctc4xxp_create_channel_pair(struct wcdte *wc,
struct channel_pvt *cpvt, u8 simple, u8 complicated);
static int wctc4xxp_destroy_channel_pair(struct wcdte *wc,
struct channel_pvt *cpvt);
static int __wctc4xxp_setup_channels(struct wcdte *wc);
static void
wctc4xxp_init_state(struct channel_pvt *cpvt, int encoder,
unsigned int channel, struct wcdte *wc)
{
memset(cpvt, 0, sizeof(*cpvt));
cpvt->encoder = encoder;
cpvt->wc = wc;
cpvt->chan_in_num = INVALID;
cpvt->chan_out_num = INVALID;
cpvt->ssrc = 0x78;
cpvt->timeslot_in_num = channel*2;
cpvt->timeslot_out_num = channel*2;
if (encoder)
++cpvt->timeslot_out_num;
else
++cpvt->timeslot_in_num;
spin_lock_init(&cpvt->lock);
INIT_LIST_HEAD(&cpvt->rx_queue);
}
static unsigned int
wctc4xxp_getctl(struct wcdte *wc, unsigned int addr)
{
unsigned int val;
unsigned long flags;
spin_lock_irqsave(&wc->reglock, flags);
val = __wctc4xxp_getctl(wc, addr);
spin_unlock_irqrestore(&wc->reglock, flags);
return val;
}
static void
wctc4xxp_cleanup_channel_private(struct wcdte *wc,
struct dahdi_transcoder_channel *dtc)
{
struct tcb *cmd, *temp;
struct channel_pvt *cpvt = dtc->pvt;
unsigned long flags;
LIST_HEAD(local_list);
spin_lock_irqsave(&cpvt->lock, flags);
list_splice_init(&cpvt->rx_queue, &local_list);
dahdi_tc_clear_data_waiting(dtc);
spin_unlock_irqrestore(&cpvt->lock, flags);
memset(&cpvt->stats, 0, sizeof(cpvt->stats));
list_for_each_entry_safe(cmd, temp, &local_list, node) {
list_del(&cmd->node);
free_cmd(cmd);
}
}
static void
wctc4xxp_mark_channel_complement_built(struct wcdte *wc,
struct dahdi_transcoder_channel *dtc)
{
int index;
struct channel_pvt *cpvt = dtc->pvt;
struct dahdi_transcoder_channel *compl_dtc;
struct channel_pvt *compl_cpvt;
BUG_ON(!cpvt);
index = cpvt->timeslot_in_num/2;
BUG_ON(index >= wc->numchannels);
if (cpvt->encoder)
compl_dtc = &(wc->udecode->channels[index]);
else
compl_dtc = &(wc->uencode->channels[index]);
/* It shouldn't already have been built... */
WARN_ON(dahdi_tc_is_built(compl_dtc));
compl_dtc->built_fmts = dtc->dstfmt | dtc->srcfmt;
compl_cpvt = compl_dtc->pvt;
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"dtc: %p is the complement to %p\n", compl_dtc, dtc);
compl_cpvt->chan_in_num = cpvt->chan_out_num;
compl_cpvt->chan_out_num = cpvt->chan_in_num;
dahdi_tc_set_built(compl_dtc);
wctc4xxp_cleanup_channel_private(wc, dtc);
}
static int
do_channel_allocate(struct dahdi_transcoder_channel *dtc)
{
struct channel_pvt *cpvt = dtc->pvt;
struct wcdte *wc = cpvt->wc;
u8 wctc4xxp_srcfmt; /* Digium Transcoder Engine Source Format */
u8 wctc4xxp_dstfmt; /* Digium Transcoder Engine Dest Format */
int res;
#ifndef DEBUG_WCTC4XXP
down(&wc->chansem);
#else
if (down_interruptible(&wc->chansem))
return -EINTR;
#endif
/* Check again to see if the channel was built after grabbing the
* channel semaphore, in case the previous holder of the semaphore
* built this channel as a complement to itself. */
if (dahdi_tc_is_built(dtc)) {
up(&wc->chansem);
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"Allocating channel %p which is already built.\n", dtc);
return 0;
}
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"Entering %s for channel %p.\n", __func__, dtc);
/* Anything on the rx queue now is old news... */
wctc4xxp_cleanup_channel_private(wc, dtc);
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"Allocating a new channel: %p.\n", dtc);
wctc4xxp_srcfmt = wctc4xxp_dahdifmt_to_dtefmt(dtc->srcfmt);
wctc4xxp_dstfmt = wctc4xxp_dahdifmt_to_dtefmt(dtc->dstfmt);
res = wctc4xxp_create_channel_pair(wc, cpvt, wctc4xxp_srcfmt,
wctc4xxp_dstfmt);
if (res) {
/* There was a problem creating the channel.... */
up(&wc->chansem);
dev_err(&wc->pdev->dev, "Failed to create channel pair.\n");
return res;
}
/* Mark this channel as built */
dahdi_tc_set_built(dtc);
dtc->built_fmts = dtc->dstfmt | dtc->srcfmt;
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"Channel %p has dstfmt=%x and srcfmt=%x\n", dtc, dtc->dstfmt,
dtc->srcfmt);
/* Mark the channel complement (other half of encoder/decoder pair) as
* built */
wctc4xxp_mark_channel_complement_built(wc, dtc);
up(&wc->chansem);
dahdi_transcoder_alert(dtc);
return 0;
}
static void
wctc4xxp_setintmask(struct wcdte *wc, unsigned int intmask)
{
wc->intmask = intmask;
wctc4xxp_setctl(wc, 0x0038, intmask);
}
static void
wctc4xxp_enable_interrupts(struct wcdte *wc)
{
wctc4xxp_setintmask(wc, 0x000180c0);
}
static void
wctc4xxp_disable_interrupts(struct wcdte *wc)
{
/* Disable interrupts */
wctc4xxp_setintmask(wc, 0x00000000);
wctc4xxp_setctl(wc, 0x0084, 0x00000000);
}
static void
wctc4xxp_enable_polling(struct wcdte *wc)
{
set_bit(DTE_POLLING, &wc->flags);
mod_timer(&wc->polling, jiffies + 1);
wctc4xxp_disable_interrupts(wc);
}
static int
wctc4xxp_operation_allocate(struct dahdi_transcoder_channel *dtc)
{
struct wcdte *wc = ((struct channel_pvt *)(dtc->pvt))->wc;
if (unlikely(test_bit(DTE_SHUTDOWN, &wc->flags))) {
/* The shudown flags can also be set if there is a
* catastrophic failure. */
return -EIO;
}
atomic_inc(&wc->open_channels);
if (atomic_read(&wc->open_channels) > POLLING_CALL_THRESHOLD) {
if (!test_bit(DTE_POLLING, &wc->flags))
wctc4xxp_enable_polling(wc);
}
if (dahdi_tc_is_built(dtc)) {
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"Allocating channel %p which is already built.\n", dtc);
return 0;
}
return do_channel_allocate(dtc);
}
static void
wctc4xxp_disable_polling(struct wcdte *wc)
{
clear_bit(DTE_POLLING, &wc->flags);
wctc4xxp_enable_interrupts(wc);
}
static int
wctc4xxp_operation_release(struct dahdi_transcoder_channel *dtc)
{
int res;
int index;
/* This is the 'complimentary channel' to dtc. I.e., if dtc is an
* encoder, compl_dtc is the decoder and vice-versa */
struct dahdi_transcoder_channel *compl_dtc;
struct channel_pvt *compl_cpvt;
struct channel_pvt *cpvt = dtc->pvt;
struct wcdte *wc = cpvt->wc;
int packets_received, packets_sent;
BUG_ON(!cpvt);
BUG_ON(!wc);
if (unlikely(test_bit(DTE_SHUTDOWN, &wc->flags))) {
/* The shudown flags can also be set if there is a
* catastrophic failure. */
return -EIO;
}
#ifndef DEBUG_WCTC4XXP
down(&wc->chansem);
#else
if (down_interruptible(&wc->chansem))
return -EINTR;
#endif
atomic_dec(&wc->open_channels);
#if !defined(CONFIG_WCTC4XXP_POLLING)
if (atomic_read(&wc->open_channels) < POLLING_CALL_THRESHOLD) {
if (test_bit(DTE_POLLING, &wc->flags))
wctc4xxp_disable_polling(wc);
}
#endif
packets_received = atomic_read(&cpvt->stats.packets_received);
packets_sent = atomic_read(&cpvt->stats.packets_sent);
if ((packets_sent - packets_received) > 5) {
DTE_DEBUG(DTE_DEBUG_GENERAL, "%s channel %d sent %d packets "
"and received %d packets.\n", (cpvt->encoder) ?
"encoder" : "decoder", cpvt->chan_out_num,
packets_sent, packets_received);
}
/* Remove any packets that are waiting on the outbound queue. */
wctc4xxp_cleanup_channel_private(wc, dtc);
index = cpvt->timeslot_in_num/2;
BUG_ON(index >= wc->numchannels);
if (cpvt->encoder)
compl_dtc = &(wc->udecode->channels[index]);
else
compl_dtc = &(wc->uencode->channels[index]);
BUG_ON(!compl_dtc);
if (!dahdi_tc_is_built(compl_dtc)) {
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"Releasing a channel that was never built.\n");
res = 0;
goto error_exit;
}
/* If the channel complement (other half of the encoder/decoder pair) is
* being used. */
if (dahdi_tc_is_busy(compl_dtc)) {
res = 0;
goto error_exit;
}
res = wctc4xxp_destroy_channel_pair(wc, cpvt);
if (res)
goto error_exit;
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP, "Releasing channel: %p\n", dtc);
/* Mark this channel as not built */
dahdi_tc_clear_built(dtc);
dtc->built_fmts = 0;
cpvt->chan_in_num = INVALID;
cpvt->chan_out_num = INVALID;
/* Mark the channel complement as not built */
dahdi_tc_clear_built(compl_dtc);
compl_dtc->built_fmts = 0;
compl_cpvt = compl_dtc->pvt;
compl_cpvt->chan_in_num = INVALID;
compl_cpvt->chan_out_num = INVALID;
error_exit:
up(&wc->chansem);
return res;
}
static inline struct tcb*
get_ready_cmd(struct dahdi_transcoder_channel *dtc)
{
struct channel_pvt *cpvt = dtc->pvt;
struct tcb *cmd;
unsigned long flags;
spin_lock_irqsave(&cpvt->lock, flags);
if (!list_empty(&cpvt->rx_queue)) {
WARN_ON(!dahdi_tc_is_data_waiting(dtc));
cmd = list_entry(cpvt->rx_queue.next, struct tcb, node);
list_del_init(&cmd->node);
} else {
cmd = NULL;
}
if (list_empty(&cpvt->rx_queue))
dahdi_tc_clear_data_waiting(dtc);
spin_unlock_irqrestore(&cpvt->lock, flags);
return cmd;
}
static int
wctc4xxp_handle_receive_ring(struct wcdte *wc)
{
struct tcb *cmd;
unsigned long flags;
unsigned int count = 0;
/* If we can't grab this lock, another thread must already be checking
* the receive ring...so we should just finish up, and we'll try again
* later. */
#if defined(spin_trylock_irqsave)
if (!spin_trylock_irqsave(&wc->rx_lock, flags))
return 0;
#else
if (spin_is_locked(&wc->rx_lock))
return 0;
spin_lock_irqsave(&wc->rx_lock, flags);
#endif
while ((cmd = wctc4xxp_retrieve(wc->rxd))) {
++count;
spin_lock(&wc->rx_list_lock);
list_add_tail(&cmd->node, &wc->rx_list);
spin_unlock(&wc->rx_list_lock);
cmd = __alloc_cmd(SFRAME_SIZE, GFP_ATOMIC, 0);
if (!cmd) {
dev_err(&wc->pdev->dev,
"Out of memory in %s.\n", __func__);
} else {
if (wctc4xxp_submit(wc->rxd, cmd)) {
dev_err(&wc->pdev->dev, "Failed submit in %s\n",
__func__);
free_cmd(cmd);
}
}
}
spin_unlock_irqrestore(&wc->rx_lock, flags);
return count;
}
static void
__wctc4xxp_polling(struct wcdte *wc)
{
if (wctc4xxp_handle_receive_ring(wc))
schedule_work(&wc->deferred_work);
}
static void
wctc4xxp_polling(unsigned long data)
{
struct wcdte *wc = (struct wcdte *)data;
__wctc4xxp_polling(wc);
if (test_bit(DTE_POLLING, &wc->flags))
mod_timer(&wc->polling, jiffies + 1);
}
/* Called with a buffer in which to copy a transcoded frame. */
static ssize_t
wctc4xxp_read(struct file *file, char __user *frame, size_t count, loff_t *ppos)
{
ssize_t ret;
struct dahdi_transcoder_channel *dtc = file->private_data;
struct channel_pvt *cpvt = dtc->pvt;
struct wcdte *wc = cpvt->wc;
struct tcb *cmd;
struct rtp_packet *packet;
ssize_t payload_bytes;
ssize_t returned_bytes = 0;
unsigned long flags;
BUG_ON(!dtc);
BUG_ON(!cpvt);
if (unlikely(test_bit(DTE_SHUTDOWN, &wc->flags))) {
/* The shudown flags can also be set if there is a
* catastrophic failure. */
return -EIO;
}
cmd = get_ready_cmd(dtc);
if (!cmd) {
if (file->f_flags & O_NONBLOCK)
return -EAGAIN;
ret = wait_event_interruptible(dtc->ready,
dahdi_tc_is_data_waiting(dtc));
if (-ERESTARTSYS == ret)
return -EINTR;
/* List went not empty. */
cmd = get_ready_cmd(dtc);
}
do {
BUG_ON(!cmd);
packet = cmd->data;
payload_bytes = be16_to_cpu(packet->udphdr.len) -
sizeof(struct rtphdr) -
sizeof(struct udphdr);
if (count < (payload_bytes + returned_bytes)) {
if (returned_bytes) {
/* If we have already returned at least one
* packets worth of data, we'll add this next
* packet to the head of the receive queue so
* it will be picked up next time. */
spin_lock_irqsave(&cpvt->lock, flags);
list_add(&cmd->node, &cpvt->rx_queue);
dahdi_tc_set_data_waiting(dtc);
spin_unlock_irqrestore(&cpvt->lock, flags);
return returned_bytes;
}
if (printk_ratelimit()) {
dev_err(&wc->pdev->dev,
"Cannot copy %zd bytes into %zd byte user " \
"buffer.\n", payload_bytes, count);
}
free_cmd(cmd);
return -EFBIG;
}
atomic_inc(&cpvt->stats.packets_received);
ret = copy_to_user(&frame[returned_bytes],
&packet->payload[0], payload_bytes);
if (unlikely(ret)) {
dev_err(&wc->pdev->dev, "Failed to copy data in %s\n",
__func__);
free_cmd(cmd);
return -EFAULT;
}
returned_bytes += payload_bytes;
free_cmd(cmd);
} while ((cmd = get_ready_cmd(dtc)));
return returned_bytes;
}
/* Called with a frame in the srcfmt to be transcoded into the dstfmt. */
static ssize_t
wctc4xxp_write(struct file *file, const char __user *frame,
size_t count, loff_t *ppos)
{
struct dahdi_transcoder_channel *dtc = file->private_data;
struct channel_pvt *cpvt = dtc->pvt;
struct wcdte *wc = cpvt->wc;
struct tcb *cmd;
BUG_ON(!cpvt);
BUG_ON(!wc);
if (unlikely(test_bit(DTE_SHUTDOWN, &wc->flags)))
return -EIO;
if (!test_bit(DAHDI_TC_FLAG_CHAN_BUILT, &dtc->flags))
return -EAGAIN;
if (count < 2) {
DTE_DEBUG(DTE_DEBUG_GENERAL,
"Cannot request to transcode a packet that is less than " \
"2 bytes.\n");
return -EINVAL;
}
if (unlikely(count > SFRAME_SIZE - sizeof(struct rtp_packet))) {
DTE_DEBUG(DTE_DEBUG_GENERAL,
"Cannot transcode packet of %Zu bytes. This exceeds the " \
"maximum size of %Zu bytes.\n", count,
SFRAME_SIZE - sizeof(struct rtp_packet));
return -EINVAL;
}
if (DAHDI_FORMAT_G723_1 == dtc->srcfmt) {
if ((G723_5K_BYTES != count) && (G723_6K_BYTES != count) &&
(G723_SID_BYTES != count)) {
DTE_DEBUG(DTE_DEBUG_GENERAL,
"Trying to transcode packet into G723 format " \
"that is %Zu bytes instead of the expected " \
"%d/%d/%d bytes.\n", count, G723_5K_BYTES,
G723_6K_BYTES, G723_SID_BYTES);
return -EINVAL;
}
cpvt->timestamp += G723_SAMPLES;
} else if (DAHDI_FORMAT_G723_1 == dtc->dstfmt) {
cpvt->timestamp = G723_SAMPLES;
} else {
/* Same for ulaw and alaw */
cpvt->timestamp += G729_SAMPLES;
}
cmd = wctc4xxp_create_rtp_cmd(wc, dtc, count);
if (!cmd)
return -ENOMEM;
/* Copy the data directly from user space into the command buffer. */
if (copy_from_user(&((struct rtp_packet *)(cmd->data))->payload[0],
frame, count)) {
dev_err(&wc->pdev->dev,
"Failed to copy packet from userspace.\n");
free_cmd(cmd);
return -EFAULT;
}
cpvt->seqno += 1;
DTE_DEBUG(DTE_DEBUG_RTP_TX,
"Sending packet of %Zu byte on channel (%p).\n", count, dtc);
atomic_inc(&cpvt->stats.packets_sent);
wctc4xxp_transmit_cmd(wc, cmd);
if (test_bit(DTE_POLLING, &wc->flags)) {
#if HZ == 100
__wctc4xxp_polling(wc);
#else
if (jiffies != wc->jiffies_at_last_poll) {
wc->jiffies_at_last_poll = jiffies;
__wctc4xxp_polling(wc);
}
#endif
}
return count;
}
static void
wctc4xxp_send_ack(struct wcdte *wc, u8 seqno, __be16 channel)
{
struct tcb *cmd;
struct csm_encaps_hdr *hdr;
cmd = __alloc_cmd(sizeof(*hdr), ALLOC_FLAGS, 0);
if (!cmd) {
WARN_ON(1);
return;
}
hdr = cmd->data;
BUG_ON(sizeof(*hdr) > cmd->data_len);
setup_common_header(wc, hdr);
hdr->op_code = cpu_to_be16(0x0001);
hdr->seq_num = seqno;
hdr->control = 0xe0;
hdr->channel = channel;
wctc4xxp_transmit_cmd(wc, cmd);
}
static bool do_rx_response_packet(struct wcdte *wc, struct tcb *cmd)
{
const struct csm_encaps_hdr *listhdr, *rxhdr;
struct tcb *pos, *temp;
unsigned long flags;
bool handled = false;
rxhdr = cmd->data;
if (SUPERVISOR_CHANNEL == rxhdr->channel) {
/* We received a duplicate response. */
if (rxhdr->seq_num == wc->last_rx_seq_num) {
free_cmd(cmd);
return false;
}
wc->last_rx_seq_num = rxhdr->seq_num;
}
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_for_each_entry_safe(pos, temp,
&wc->waiting_for_response_list, node) {
listhdr = pos->data;
if ((listhdr->function == rxhdr->function) &&
(listhdr->channel == rxhdr->channel)) {
spin_lock(&pos->lock);
list_del_init(&pos->node);
pos->flags &= ~(__WAIT_FOR_RESPONSE);
pos->response = cmd;
/* If this isn't TX_COMPLETE yet, then this packet will
* be completed in service_tx_ring. */
if (pos->flags & TX_COMPLETE)
complete(&pos->complete);
spin_unlock(&pos->lock);
handled = true;
break;
}
}
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
if (!handled) {
DTE_DEBUG(DTE_DEBUG_GENERAL,
"Freeing unhandled response ch:(%04x)\n",
be16_to_cpu(rxhdr->channel));
free_cmd(cmd);
return false;
}
return true;
}
static void
do_rx_ack_packet(struct wcdte *wc, struct tcb *cmd)
{
const struct csm_encaps_hdr *listhdr, *rxhdr;
struct tcb *pos, *temp;
unsigned long flags;
rxhdr = cmd->data;
spin_lock_irqsave(&wc->cmd_list_lock, flags);
list_for_each_entry_safe(pos, temp,
&wc->waiting_for_response_list, node) {
listhdr = pos->data;
if (cpu_to_be16(0xefed) == listhdr->ethhdr.h_proto) {
wc->seq_num = (rxhdr->seq_num + 1) & 0xff;
WARN_ON(!(pos->flags & DO_NOT_AUTO_FREE));
WARN_ON(!(pos->flags & TX_COMPLETE));
list_del_init(&pos->node);
WARN_ON(!(pos->flags & TX_COMPLETE));
complete(&pos->complete);
} else if ((listhdr->seq_num == rxhdr->seq_num) &&
(listhdr->channel == rxhdr->channel)) {
spin_lock(&pos->lock);
if (pos->flags & __WAIT_FOR_RESPONSE) {
pos->flags &= ~(__WAIT_FOR_ACK);
spin_unlock(&pos->lock);
} else {
list_del_init(&pos->node);
if (pos->flags & DO_NOT_AUTO_FREE) {
WARN_ON(!(pos->flags & TX_COMPLETE));
complete(&pos->complete);
spin_unlock(&pos->lock);
} else {
spin_unlock(&pos->lock);
free_cmd(pos);
}
}
break;
}
}
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
/* There is never a reason to store up the ack packets. */
free_cmd(cmd);
}
static inline int
is_response(const struct csm_encaps_hdr *hdr)
{
return ((0x02 == hdr->type) || (0x04 == hdr->type)) ? 1 : 0;
}
static void
print_command(struct wcdte *wc, const struct tcb *cmd)
{
int i, curlength;
const struct csm_encaps_hdr *hdr = cmd->data;
char *buffer;
const int BUFFER_SIZE = 1024;
int parameters = ((hdr->length - 8)/sizeof(__le16));
buffer = kzalloc(BUFFER_SIZE + 1, GFP_ATOMIC);
if (!buffer) {
dev_info(&wc->pdev->dev, "Failed print_command\n");
return;
}
curlength = snprintf(buffer, BUFFER_SIZE,
"opcode: %04x seq: %02x control: %02x "
"channel: %04x ", be16_to_cpu(hdr->op_code),
hdr->seq_num, hdr->control, be16_to_cpu(hdr->channel));
curlength += snprintf(buffer + curlength, BUFFER_SIZE - curlength,
"length: %02x index: %02x type: %02x "
"class: %02x function: %04x",
hdr->length, hdr->index, hdr->type, hdr->class,
le16_to_cpu(hdr->function));
for (i = 0; i < parameters; ++i) {
curlength += snprintf(buffer + curlength,
BUFFER_SIZE - curlength, " %04x",
le16_to_cpu(hdr->params[i]));
}
dev_info(&wc->pdev->dev, "%s\n", buffer);
kfree(buffer);
}
static void
receive_csm_encaps_packet(struct wcdte *wc, struct tcb *cmd)
{
const struct csm_encaps_hdr *hdr = cmd->data;
if (!(hdr->control & MESSAGE_PACKET)) {
const bool suppress_ack = ((hdr->control & SUPPRESS_ACK) > 0);
if (is_response(hdr)) {
u8 seq_num = hdr->seq_num;
__be16 channel = hdr->channel;
if (do_rx_response_packet(wc, cmd) && !suppress_ack)
wctc4xxp_send_ack(wc, seq_num, channel);
} else if (0xc1 == hdr->type) {
if (!suppress_ack) {
wctc4xxp_send_ack(wc, hdr->seq_num,
hdr->channel);
}
if (0x75 == hdr->class) {
dev_warn(&wc->pdev->dev,
"Received alert (0x%04x) from dsp\n",
le16_to_cpu(hdr->params[0]));
}
free_cmd(cmd);
} else if (0xd4 == hdr->type) {
if (!suppress_ack) {
wctc4xxp_send_ack(wc, hdr->seq_num,
hdr->channel);
}
if (hdr->params[0] != le16_to_cpu(0xffff)) {
dev_warn(&wc->pdev->dev,
"DTE Failed self test (%04x).\n",
le16_to_cpu(hdr->params[0]));
} else if ((hdr->params[1] != le16_to_cpu(0x000c)) &&
(hdr->params[1] != le16_to_cpu(0x010c))) {
dev_warn(&wc->pdev->dev,
"Unexpected ERAM status (%04x).\n",
le16_to_cpu(hdr->params[1]));
} else {
wctc4xxp_set_ready(wc);
wake_up(&wc->waitq);
}
free_cmd(cmd);
} else if (MONITOR_LIVE_INDICATION_TYPE == hdr->type) {
if (!suppress_ack) {
wctc4xxp_send_ack(wc, hdr->seq_num,
hdr->channel);
}
if (hdr->function == 0x0000) {
u16 alert_type = le16_to_cpu(hdr->params[0]);
dev_err(&wc->pdev->dev,
"Received alert (0x%04x) from dsp. Please reload driver.\n",
alert_type);
set_bit(DTE_SHUTDOWN, &wc->flags);
wctc4xxp_timeout_all_commands(wc);
} else {
dev_warn(&wc->pdev->dev,
"Received diagnostic message:\n");
}
print_command(wc, cmd);
free_cmd(cmd);
} else {
if (!suppress_ack) {
wctc4xxp_send_ack(wc, hdr->seq_num,
hdr->channel);
}
dev_warn(&wc->pdev->dev,
"Unknown command type received. %02x\n", hdr->type);
free_cmd(cmd);
}
} else {
do_rx_ack_packet(wc, cmd);
}
}
static void
queue_rtp_packet(struct wcdte *wc, struct tcb *cmd)
{
unsigned index;
struct dahdi_transcoder_channel *dtc;
struct channel_pvt *cpvt;
struct rtp_packet *packet = cmd->data;
unsigned long flags;
if (unlikely(ip_fast_csum((void *)(&packet->iphdr),
packet->iphdr.ihl))) {
DTE_DEBUG(DTE_DEBUG_GENERAL,
"Invalid checksum in RTP packet %04x\n",
ip_fast_csum((void *)(&packet->iphdr),
packet->iphdr.ihl));
free_cmd(cmd);
return;
}
index = (be16_to_cpu(packet->udphdr.dest) - 0x5000) / 2;
if (unlikely(!(index < wc->numchannels))) {
dev_err(&wc->pdev->dev,
"Invalid channel number in response from DTE.\n");
free_cmd(cmd);
return;
}
switch (packet->rtphdr.type) {
case 0x00:
case 0x08:
dtc = &(wc->udecode->channels[index]);
break;
case 0x04:
case 0x12:
dtc = &(wc->uencode->channels[index]);
break;
default:
dev_err(&wc->pdev->dev, "Unknown codec in packet (0x%02x).\n",\
packet->rtphdr.type);
free_cmd(cmd);
return;
}
cpvt = dtc->pvt;
spin_lock_irqsave(&cpvt->lock, flags);
list_add_tail(&cmd->node, &cpvt->rx_queue);
dahdi_tc_set_data_waiting(dtc);
spin_unlock_irqrestore(&cpvt->lock, flags);
dahdi_transcoder_alert(dtc);
return;
}
static inline void
wctc4xxp_receiveprep(struct wcdte *wc, struct tcb *cmd)
{
const struct ethhdr *ethhdr = (const struct ethhdr *)(cmd->data);
if (cpu_to_be16(ETH_P_IP) == ethhdr->h_proto) {
queue_rtp_packet(wc, cmd);
} else if (cpu_to_be16(ETH_P_CSM_ENCAPS) == ethhdr->h_proto) {
receive_csm_encaps_packet(wc, cmd);
} else {
DTE_DEBUG(DTE_DEBUG_GENERAL,
"Unknown packet protocol received: %04x.\n",
be16_to_cpu(ethhdr->h_proto));
free_cmd(cmd);
}
}
static void service_tx_ring(struct wcdte *wc)
{
struct tcb *cmd;
unsigned long flags;
while ((cmd = wctc4xxp_retrieve(wc->txd))) {
spin_lock_irqsave(&cmd->lock, flags);
cmd->flags |= TX_COMPLETE;
if (!(cmd->flags & (__WAIT_FOR_ACK | __WAIT_FOR_RESPONSE))) {
/* If we're not waiting for an ACK or Response from
* the DTE, this message should not be sitting on any
* lists. */
WARN_ON(!list_empty(&cmd->node));
if (DO_NOT_AUTO_FREE & cmd->flags) {
spin_unlock_irqrestore(&cmd->lock, flags);
WARN_ON(!(cmd->flags & TX_COMPLETE));
complete(&cmd->complete);
} else {
spin_unlock_irqrestore(&cmd->lock, flags);
free_cmd(cmd);
}
} else {
spin_unlock_irqrestore(&cmd->lock, flags);
}
/* We've freed up a spot in the hardware ring buffer. If
* another packet is queued up, let's submit it to the
* hardware. */
spin_lock_irqsave(&wc->cmd_list_lock, flags);
if (!list_empty(&wc->cmd_list)) {
cmd = list_entry(wc->cmd_list.next, struct tcb, node);
list_del_init(&cmd->node);
} else {
cmd = NULL;
}
spin_unlock_irqrestore(&wc->cmd_list_lock, flags);
if (cmd)
wctc4xxp_transmit_cmd(wc, cmd);
}
}
static void service_rx_ring(struct wcdte *wc)
{
struct tcb *cmd;
unsigned long flags;
LIST_HEAD(local_list);
spin_lock_irqsave(&wc->rx_list_lock, flags);
list_splice_init(&wc->rx_list, &local_list);
spin_unlock_irqrestore(&wc->rx_list_lock, flags);
/*
* Process the received packets
*/
while (!list_empty(&local_list)) {
cmd = container_of(local_list.next, struct tcb, node);
list_del_init(&cmd->node);
wctc4xxp_net_capture_cmd(wc, cmd);
wctc4xxp_receiveprep(wc, cmd);
}
wctc4xxp_receive_demand_poll(wc);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void deferred_work_func(void *param)
{
struct wcdte *wc = param;
#else
static void deferred_work_func(struct work_struct *work)
{
struct wcdte *wc = container_of(work, struct wcdte, deferred_work);
#endif
service_tx_ring(wc);
service_rx_ring(wc);
}
DAHDI_IRQ_HANDLER(wctc4xxp_interrupt)
{
struct wcdte *wc = dev_id;
u32 ints;
u32 reg;
#define TX_COMPLETE_INTERRUPT 0x00000001
#define RX_COMPLETE_INTERRUPT 0x00000040
#define NORMAL_INTERRUPTS (TX_COMPLETE_INTERRUPT | RX_COMPLETE_INTERRUPT)
/* Read and clear interrupts */
ints = __wctc4xxp_getctl(wc, 0x0028);
ints &= wc->intmask;
if (!ints)
return IRQ_NONE;
if (likely(ints & NORMAL_INTERRUPTS)) {
reg = 0;
if (ints & TX_COMPLETE_INTERRUPT)
reg |= TX_COMPLETE_INTERRUPT;
if (ints & RX_COMPLETE_INTERRUPT) {
wctc4xxp_handle_receive_ring(wc);
reg |= RX_COMPLETE_INTERRUPT;
}
#if DEFERRED_PROCESSING == WORKQUEUE
schedule_work(&wc->deferred_work);
#elif DEFERRED_PROCESSING == INTERRUPT
#error "You will need to change the locks if you want to run the processing " \
"in the interrupt handler."
#else
#error "Define a deferred processing function in kernel/wctc4xxp/wctc4xxp.h"
#endif
__wctc4xxp_setctl(wc, 0x0028, reg);
} else {
if ((ints & 0x00008000) && debug)
dev_info(&wc->pdev->dev, "Abnormal Interrupt.\n");
if ((ints & 0x00002000) && debug)
dev_info(&wc->pdev->dev, "Fatal Bus Error INT\n");
if ((ints & 0x00000100) && debug)
dev_info(&wc->pdev->dev, "Receive Stopped INT\n");
if ((ints & 0x00000080) && debug) {
dev_info(&wc->pdev->dev,
"Receive Desciptor Unavailable INT " \
"(%d)\n", wctc4xxp_getcount(wc->rxd));
}
if ((ints & 0x00000020) && debug)
dev_info(&wc->pdev->dev, "Transmit Under-flow INT\n");
if ((ints & 0x00000008) && debug)
dev_info(&wc->pdev->dev, "Jabber Timer Time-out INT\n");
if ((ints & 0x00000002) && debug) {
dev_info(&wc->pdev->dev,
"Transmit Processor Stopped INT\n");
}
/* Clear all the pending interrupts. */
__wctc4xxp_setctl(wc, 0x0028, ints);
}
return IRQ_HANDLED;
}
static int
wctc4xxp_hardware_init(struct wcdte *wc)
{
/* Hardware stuff */
enum {
/* Software Reset */
SWR = (1 << 0),
/* Bus Arbitration (1 for priority transmit) */
BAR = (1 << 1),
/* Memory Write Invalidate */
MWI = (1 << 24),
/* Memory Read Line */
MRL = (1 << 23),
/* Descriptor Skip Length */
DSLShift = 2,
/* Cache Alignment */
CALShift = 14,
/* Transmit Auto Pollling */
TAPShift = 17,
};
u32 reg;
unsigned long newjiffies;
u8 cache_line_size;
const u32 DEFAULT_PCI_ACCESS = (MWI | (11 << TAPShift));
if (pci_read_config_byte(wc->pdev, 0x0c, &cache_line_size))
return -EIO;
switch (cache_line_size) {
case 0x08:
reg = DEFAULT_PCI_ACCESS | (0x1 << CALShift);
break;
case 0x10:
reg = DEFAULT_PCI_ACCESS | (0x2 << CALShift);
break;
case 0x20:
reg = DEFAULT_PCI_ACCESS | (0x3 << CALShift);
break;
default:
reg = (11 << TAPShift);
break;
}
reg |= ((wc->txd->padding / sizeof(u32)) << 2) & 0x7c;
/* Reset the DTE... */
wctc4xxp_setctl(wc, 0x0000, reg | 1);
newjiffies = jiffies + HZ; /* One second timeout */
/* ...and wait for it to come out of reset. */
while (((wctc4xxp_getctl(wc, 0x0000)) & 0x00000001) &&
(newjiffies > jiffies))
msleep(1);
wctc4xxp_setctl(wc, 0x0000, reg | 0x60000);
/* Configure watchdogs, access, etc */
wctc4xxp_setctl(wc, 0x0030, 0x00280040);
wctc4xxp_setctl(wc, 0x0078, 0x00000013);
reg = wctc4xxp_getctl(wc, 0x00fc);
wctc4xxp_setctl(wc, 0x00fc, (reg & ~0x7) | 0x7);
reg = wctc4xxp_getctl(wc, 0x00fc);
return 0;
}
static void
wctc4xxp_start_dma(struct wcdte *wc)
{
int res;
int i;
u32 reg;
struct tcb *cmd;
for (i = 0; i < DRING_SIZE; ++i) {
cmd = alloc_cmd(SFRAME_SIZE);
if (!cmd) {
WARN_ALWAYS();
return;
}
WARN_ON(SFRAME_SIZE != cmd->data_len);
res = wctc4xxp_submit(wc->rxd, cmd);
if (res) {
/* When we're starting the DMA, we should always be
* able to fill the ring....so something is wrong
* here. */
WARN_ALWAYS();
free_cmd(cmd);
break;
}
}
wmb();
wctc4xxp_setctl(wc, 0x0020, wc->txd->desc_dma);
wctc4xxp_setctl(wc, 0x0018, wc->rxd->desc_dma);
/* Start receiver/transmitter */
reg = wctc4xxp_getctl(wc, 0x0030);
wctc4xxp_setctl(wc, 0x0030, reg | 0x00002002);
wctc4xxp_receive_demand_poll(wc);
reg = wctc4xxp_getctl(wc, 0x0028);
wctc4xxp_setctl(wc, 0x0028, reg);
}
static void
_wctc4xxp_stop_dma(struct wcdte *wc)
{
/* Disable interrupts and reset */
unsigned int reg;
/* Disable interrupts */
wctc4xxp_setintmask(wc, 0x00000000);
wctc4xxp_setctl(wc, 0x0084, 0x00000000);
wctc4xxp_setctl(wc, 0x0048, 0x00000000);
/* Reset the part to be on the safe side */
reg = wctc4xxp_getctl(wc, 0x0000);
reg |= 0x00000001;
wctc4xxp_setctl(wc, 0x0000, reg);
}
static void
wctc4xxp_stop_dma(struct wcdte *wc)
{
unsigned long newjiffies;
_wctc4xxp_stop_dma(wc);
newjiffies = jiffies + HZ; /* One second timeout */
/* We'll wait here for the part to come out of reset */
while (((wctc4xxp_getctl(wc, 0x0000)) & 0x00000001) &&
(newjiffies > jiffies))
msleep(1);
}
#define MDIO_SHIFT_CLK 0x10000
#define MDIO_DATA_WRITE1 0x20000
#define MDIO_ENB 0x00000
#define MDIO_ENB_IN 0x40000
#define MDIO_DATA_READ 0x80000
static int
wctc4xxp_read_phy(struct wcdte *wc, int location)
{
int i;
long mdio_addr = 0x0048;
int read_cmd = (0xf6 << 10) | (1 << 5) | location;
int retval = 0;
/* Establish sync by sending at least 32 logic ones. */
for (i = 32; i >= 0; --i) {
wctc4xxp_setctl(wc, mdio_addr,
MDIO_ENB | MDIO_DATA_WRITE1);
wctc4xxp_getctl(wc, mdio_addr);
wctc4xxp_setctl(wc, mdio_addr,
MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK);
wctc4xxp_getctl(wc, mdio_addr);
}
/* Shift the read command bits out. */
for (i = 17; i >= 0; --i) {
int dataval = (read_cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0;
wctc4xxp_setctl(wc, mdio_addr, MDIO_ENB | dataval);
wctc4xxp_getctl(wc, mdio_addr);
wctc4xxp_setctl(wc, mdio_addr,
MDIO_ENB | dataval | MDIO_SHIFT_CLK);
wctc4xxp_getctl(wc, mdio_addr);
}
/* Read the two transition, 16 data, and wire-idle bits. */
for (i = 19; i > 0; --i) {
wctc4xxp_setctl(wc, mdio_addr, MDIO_ENB_IN);
wctc4xxp_getctl(wc, mdio_addr);
retval = (retval << 1) |
((wctc4xxp_getctl(wc, mdio_addr) & MDIO_DATA_READ) ?
1 : 0);
wctc4xxp_setctl(wc, mdio_addr, MDIO_ENB_IN | MDIO_SHIFT_CLK);
wctc4xxp_getctl(wc, mdio_addr);
}
retval = (retval>>1) & 0xffff;
return retval;
}
static void
wctc4xxp_write_phy(struct wcdte *wc, int location, int value)
{
int i;
int cmd = (0x5002 << 16) | (1 << 23) | (location<<18) | value;
long mdio_addr = 0x0048;
/* Establish sync by sending 32 logic ones. */
for (i = 32; i >= 0; --i) {
wctc4xxp_setctl(wc, mdio_addr, MDIO_ENB | MDIO_DATA_WRITE1);
wctc4xxp_getctl(wc, mdio_addr);
wctc4xxp_setctl(wc, mdio_addr,
MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK);
wctc4xxp_getctl(wc, mdio_addr);
}
/* Shift the command bits out. */
for (i = 31; i >= 0; --i) {
int dataval = (cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0;
wctc4xxp_setctl(wc, mdio_addr, MDIO_ENB | dataval);
wctc4xxp_getctl(wc, mdio_addr);
wctc4xxp_setctl(wc, mdio_addr,
MDIO_ENB | dataval | MDIO_SHIFT_CLK);
wctc4xxp_getctl(wc, mdio_addr);
}
/* Clear out extra bits. */
for (i = 2; i > 0; --i) {
wctc4xxp_setctl(wc, mdio_addr, MDIO_ENB_IN);
wctc4xxp_getctl(wc, mdio_addr);
wctc4xxp_setctl(wc, mdio_addr, MDIO_ENB_IN | MDIO_SHIFT_CLK);
wctc4xxp_getctl(wc, mdio_addr);
}
return;
}
static int
wctc4xxp_wait_for_link(struct wcdte *wc)
{
int reg;
unsigned int delay_count = 0;
do {
reg = wctc4xxp_getctl(wc, 0x00fc);
msleep(2);
delay_count++;
if (delay_count >= 5000) {
dev_err(&wc->pdev->dev,
"Failed to link to DTE processor!\n");
return -EIO;
}
} while ((reg & 0xE0000000) != 0xE0000000);
return 0;
}
static int
wctc4xxp_load_firmware(struct wcdte *wc, const struct firmware *firmware)
{
unsigned int byteloc;
unsigned int length;
struct tcb *cmd;
byteloc = 17;
cmd = alloc_cmd(SFRAME_SIZE);
if (!cmd)
return -ENOMEM;
#if defined(CONFIG_WCTC4XXP_POLLING)
wctc4xxp_enable_polling(wc);
#endif
while (byteloc < (firmware->size-20)) {
length = (firmware->data[byteloc] << 8) |
firmware->data[byteloc+1];
byteloc += 2;
cmd->data_len = length;
BUG_ON(length > cmd->data_len);
memcpy(cmd->data, &firmware->data[byteloc], length);
byteloc += length;
cmd->flags = WAIT_FOR_ACK;
wctc4xxp_transmit_cmd(wc, cmd);
wait_for_completion(&cmd->complete);
if (cmd->flags & DTE_CMD_TIMEOUT) {
free_cmd(cmd);
dev_err(&wc->pdev->dev, "Failed to load firmware.\n");
#if defined(CONFIG_WCTC4XXP_POLLING)
wctc4xxp_disable_polling(wc);
#endif
return -EIO;
}
}
free_cmd(cmd);
if (!wait_event_timeout(wc->waitq, wctc4xxp_is_ready(wc), 15*HZ)) {
dev_err(&wc->pdev->dev, "Failed to boot firmware.\n");
#if defined(CONFIG_WCTC4XXP_POLLING)
wctc4xxp_disable_polling(wc);
#endif
return -EIO;
}
#if defined(CONFIG_WCTC4XXP_POLLING)
wctc4xxp_disable_polling(wc);
#endif
return 0;
}
static int
wctc4xxp_turn_off_booted_led(struct wcdte *wc)
{
int ret = 0;
int reg;
/* Turn off auto negotiation */
wctc4xxp_write_phy(wc, 0, 0x2100);
DTE_DEBUG(DTE_DEBUG_GENERAL, "PHY register 0 = %X\n",
wctc4xxp_read_phy(wc, 0));
/* Set reset */
wctc4xxp_setctl(wc, 0x00A0, 0x04000000);
/* Wait 4 ms to ensure processor reset */
msleep(4);
/* Clear reset */
wctc4xxp_setctl(wc, 0x00A0, 0x04080000);
/* Wait for the ethernet link */
ret = wctc4xxp_wait_for_link(wc);
if (ret)
return ret;
/* Turn off booted LED */
wctc4xxp_setctl(wc, 0x00A0, 0x04084000);
reg = wctc4xxp_getctl(wc, 0x00fc);
DTE_DEBUG(DTE_DEBUG_GENERAL, "LINK STATUS: reg(0xfc) = %X\n", reg);
reg = wctc4xxp_getctl(wc, 0x00A0);
return ret;
}
static void
wctc4xxp_turn_on_booted_led(struct wcdte *wc)
{
wctc4xxp_setctl(wc, 0x00A0, 0x04080000);
}
static int
wctc4xxp_boot_processor(struct wcdte *wc, const struct firmware *firmware)
{
int ret;
wctc4xxp_turn_off_booted_led(wc);
ret = wctc4xxp_load_firmware(wc, firmware);
if (ret)
return ret;
wctc4xxp_turn_on_booted_led(wc);
DTE_DEBUG(DTE_DEBUG_GENERAL, "Successfully booted DTE processor.\n");
return 0;
}
static int
setup_half_channel(struct channel_pvt *pvt, struct tcb *cmd, u16 length)
{
if (send_set_ip_hdr_channel_cmd(pvt, cmd))
return -EIO;
if (send_voip_vceopt_cmd(pvt, cmd, length))
return -EIO;
if (send_voip_tonectl_cmd(pvt, cmd))
return -EIO;
if (send_voip_dtmfopt_cmd(pvt, cmd))
return -EIO;
if (send_voip_indctrl_cmd(pvt, cmd))
return -EIO;
return 0;
}
static int
wctc4xxp_create_channel_pair(struct wcdte *wc, struct channel_pvt *cpvt,
u8 simple, u8 complicated)
{
struct channel_pvt *encoder_pvt, *decoder_pvt;
u16 encoder_timeslot, decoder_timeslot;
u16 encoder_channel, decoder_channel;
u16 length;
struct tcb *cmd;
cmd = alloc_cmd(SFRAME_SIZE);
if (!cmd)
return -ENOMEM;
BUG_ON(!wc || !cpvt);
if (cpvt->encoder) {
encoder_timeslot = cpvt->timeslot_in_num;
decoder_timeslot = cpvt->timeslot_out_num;
} else {
u8 temp;
encoder_timeslot = cpvt->timeslot_out_num;
decoder_timeslot = cpvt->timeslot_in_num;
temp = simple;
simple = complicated;
complicated = temp;
}
BUG_ON(encoder_timeslot/2 >= wc->numchannels);
BUG_ON(decoder_timeslot/2 >= wc->numchannels);
encoder_pvt = wc->uencode->channels[encoder_timeslot/2].pvt;
decoder_pvt = wc->udecode->channels[decoder_timeslot/2].pvt;
BUG_ON(!encoder_pvt);
BUG_ON(!decoder_pvt);
WARN_ON(encoder_timeslot == decoder_timeslot);
/* First, let's create two channels, one for the simple -> complex
* encoder and another for the complex->simple decoder. */
if (send_create_channel_cmd(wc, cmd, encoder_timeslot,
&encoder_channel))
goto error_exit;
if (send_create_channel_cmd(wc, cmd, decoder_timeslot,
&decoder_channel))
goto error_exit;
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"DTE is using the following channels encoder_channel: " \
"%d decoder_channel: %d\n", encoder_channel, decoder_channel);
length = (DTE_FORMAT_G729A == complicated) ? G729_LENGTH :
(DTE_FORMAT_G723_1 == complicated) ? G723_LENGTH : 0;
WARN_ON(encoder_channel == decoder_channel);
/* Now set all the default parameters for the encoder. */
encoder_pvt->chan_in_num = encoder_channel;
encoder_pvt->chan_out_num = decoder_channel;
if (setup_half_channel(encoder_pvt, cmd, length))
goto error_exit;
/* And likewise for the decoder. */
decoder_pvt->chan_in_num = decoder_channel;
decoder_pvt->chan_out_num = encoder_channel;
if (setup_half_channel(decoder_pvt, cmd, length))
goto error_exit;
if (send_trans_connect_cmd(wc, cmd, encoder_channel,
decoder_channel, complicated, simple))
goto error_exit;
if (send_voip_vopena_cmd(encoder_pvt, cmd, complicated))
goto error_exit;
if (send_voip_vopena_cmd(decoder_pvt, cmd, simple))
goto error_exit;
DTE_DEBUG(DTE_DEBUG_CHANNEL_SETUP,
"DTE has completed setup and connected the " \
"two channels together.\n");
free_cmd(cmd);
return 0;
error_exit:
free_cmd(cmd);
return -EIO;
}
static int
wctc4xxp_destroy_channel_pair(struct wcdte *wc, struct channel_pvt *cpvt)
{
struct dahdi_transcoder_channel *dtc1, *dtc2;
struct channel_pvt *encoder_pvt, *decoder_pvt;
int chan1, chan2, timeslot1, timeslot2;
struct tcb *cmd;
cmd = alloc_cmd(SFRAME_SIZE);
if (!cmd)
return -ENOMEM;
if (cpvt->encoder) {
chan1 = cpvt->chan_in_num;
timeslot1 = cpvt->timeslot_in_num;
chan2 = cpvt->chan_out_num;
timeslot2 = cpvt->timeslot_out_num;
} else {
chan1 = cpvt->chan_out_num;
timeslot1 = cpvt->timeslot_out_num;
chan2 = cpvt->chan_in_num;
timeslot2 = cpvt->timeslot_in_num;
}
if (timeslot1/2 >= wc->numchannels || timeslot2/2 >= wc->numchannels) {
dev_warn(&wc->pdev->dev,
"Invalid channel numbers in %s. chan1:%d chan2: %d\n",
__func__, timeslot1/2, timeslot2/2);
return 0;
}
dtc1 = &(wc->uencode->channels[timeslot1/2]);
dtc2 = &(wc->udecode->channels[timeslot2/2]);
encoder_pvt = dtc1->pvt;
decoder_pvt = dtc2->pvt;
if (send_voip_vopena_close_cmd(encoder_pvt, cmd))
goto error_exit;
if (send_voip_vopena_close_cmd(decoder_pvt, cmd))
goto error_exit;
if (send_trans_disconnect_cmd(wc, cmd, chan1, chan2, 0, 0))
goto error_exit;
if (send_destroy_channel_cmd(wc, cmd, chan1))
goto error_exit;
if (send_destroy_channel_cmd(wc, cmd, chan2))
goto error_exit;
free_cmd(cmd);
return 0;
error_exit:
free_cmd(cmd);
return -1;
}
static int
__wctc4xxp_setup_channels(struct wcdte *wc)
{
struct tcb *cmd;
int tdm_bus;
cmd = alloc_cmd(SFRAME_SIZE);
if (!cmd)
return -ENOMEM;
if (send_set_arm_clk_cmd(wc, cmd))
goto error_exit;
if (send_set_spu_clk_cmd(wc, cmd))
goto error_exit;
if (send_tdm_select_bus_mode_cmd(wc, cmd))
goto error_exit;
for (tdm_bus = 0; tdm_bus < 4; ++tdm_bus) {
if (send_supvsr_setup_tdm_parms(wc, cmd, tdm_bus))
goto error_exit;
}
if (send_set_eth_header_cmd(wc, cmd, src_mac, dst_mac))
goto error_exit;
if (send_ip_service_config_cmd(wc, cmd))
goto error_exit;
if (send_arp_service_config_cmd(wc, cmd))
goto error_exit;
if (send_icmp_service_config_cmd(wc, cmd))
goto error_exit;
if (send_device_set_country_code_cmd(wc, cmd))
goto error_exit;
if (send_spu_features_control_cmd(wc, cmd, 0x02))
goto error_exit;
if (send_ip_options_cmd(wc, cmd))
goto error_exit;
if (send_spu_features_control_cmd(wc, cmd, 0x04))
goto error_exit;
if (send_tdm_opt_cmd(wc, cmd))
goto error_exit;
free_cmd(cmd);
return 0;
error_exit:
free_cmd(cmd);
return -1;
}
static int
wctc4xxp_setup_channels(struct wcdte *wc)
{
int ret;
#ifndef DEBUG_WCTC4XXP
down(&wc->chansem);
#else
if (down_interruptible(&wc->chansem))
return -EINTR;
#endif
ret = __wctc4xxp_setup_channels(wc);
up(&wc->chansem);
return ret;
}
static void wctc4xxp_setup_file_operations(struct file_operations *fops)
{
fops->owner = THIS_MODULE;
fops->read = wctc4xxp_read;
fops->write = wctc4xxp_write;
}
static int
initialize_channel_pvt(struct wcdte *wc, int encoder,
struct channel_pvt **cpvt)
{
int chan;
*cpvt = kmalloc(sizeof(struct channel_pvt) * wc->numchannels,
GFP_KERNEL);
if (!(*cpvt))
return -ENOMEM;
for (chan = 0; chan < wc->numchannels; ++chan)
wctc4xxp_init_state((*cpvt) + chan, encoder, chan, wc);
return 0;
}
static int
initialize_transcoder(struct wcdte *wc, unsigned int srcfmts,
unsigned int dstfmts, struct channel_pvt *pvts,
struct dahdi_transcoder **zt)
{
int chan;
*zt = dahdi_transcoder_alloc(wc->numchannels);
if (!(*zt))
return -ENOMEM;
(*zt)->srcfmts = srcfmts;
(*zt)->dstfmts = dstfmts;
(*zt)->allocate = wctc4xxp_operation_allocate;
(*zt)->release = wctc4xxp_operation_release;
wctc4xxp_setup_file_operations(&((*zt)->fops));
for (chan = 0; chan < wc->numchannels; ++chan)
(*zt)->channels[chan].pvt = &pvts[chan];
return 0;
}
static int initialize_encoders(struct wcdte *wc, unsigned int complexfmts)
{
int res;
res = initialize_channel_pvt(wc, 1, &wc->encoders);
if (res)
return res;
res = initialize_transcoder(wc, DAHDI_FORMAT_ULAW | DAHDI_FORMAT_ALAW,
complexfmts, wc->encoders, &wc->uencode);
if (res)
return res;
sprintf(wc->uencode->name, "DTE Encoder");
return res;
}
static int
initialize_decoders(struct wcdte *wc, unsigned int complexfmts)
{
int res;
res = initialize_channel_pvt(wc, 0, &wc->decoders);
if (res)
return res;
res = initialize_transcoder(wc, complexfmts,
DAHDI_FORMAT_ULAW | DAHDI_FORMAT_ALAW,
wc->decoders, &wc->udecode);
if (res)
return res;
sprintf(wc->udecode->name, "DTE Decoder");
return res;
}
static void
wctc4xxp_send_commands(struct wcdte *wc, struct list_head *to_send)
{
struct tcb *cmd;
while (!list_empty(to_send)) {
cmd = container_of(to_send->next, struct tcb, node);
list_del_init(&cmd->node);
wctc4xxp_transmit_cmd(wc, cmd);
}
}
static void
wctc4xxp_watchdog(unsigned long data)
{
struct wcdte *wc = (struct wcdte *)data;
struct tcb *cmd, *temp;
LIST_HEAD(cmds_to_retry);
const int MAX_RETRIES = 5;
int reschedule_timer = 0;
service_tx_ring(wc);
spin_lock(&wc->cmd_list_lock);
/* Go through the list of messages that are waiting for responses from
* the DTE, and complete or retry any that have timed out. */
list_for_each_entry_safe(cmd, temp,
&wc->waiting_for_response_list, node) {
if (time_after(jiffies, cmd->timeout)) {
if (++cmd->retries > MAX_RETRIES) {
if (!(cmd->flags & TX_COMPLETE)) {
cmd->flags |= DTE_CMD_TIMEOUT;
list_del_init(&cmd->node);
complete(&cmd->complete);
set_bit(DTE_SHUTDOWN, &wc->flags);
spin_unlock(&wc->cmd_list_lock);
_wctc4xxp_stop_dma(wc);
dev_err(&wc->pdev->dev,
"Board malfunctioning. " \
"Halting operation.\n");
reschedule_timer = 0;
spin_lock(&wc->cmd_list_lock);
break;
}
/* ERROR: We've retried the command and
* haven't received the ACK or the response.
*/
cmd->flags |= DTE_CMD_TIMEOUT;
list_del_init(&cmd->node);
complete(&cmd->complete);
} else if (cmd->flags & TX_COMPLETE) {
/* Move this to the local list because we're
* going to resend it once we free the locks
*/
list_move_tail(&cmd->node, &cmds_to_retry);
cmd->flags &= ~(TX_COMPLETE);
} else {
/* The command is still sitting on the tx
* descriptor ring. We don't want to move it
* off any lists, lets just reset the timeout
* and tell the hardware to look for another
* command . */
dev_warn(&wc->pdev->dev,
"Retrying command that was " \
"still on descriptor list.\n");
cmd->timeout = jiffies + HZ/4;
wctc4xxp_transmit_demand_poll(wc);
reschedule_timer = 1;
}
}
}
spin_unlock(&wc->cmd_list_lock);
if (list_empty(&cmds_to_retry) && reschedule_timer)
mod_timer(&wc->watchdog, jiffies + HZ/2);
else if (!list_empty(&cmds_to_retry))
wctc4xxp_send_commands(wc, &cmds_to_retry);
}
/**
* Insert an struct wcdte on the global list in sorted order
*
*/
static int __devinit
wctc4xxp_add_to_device_list(struct wcdte *wc)
{
struct wcdte *cur;
int pos = 0;
INIT_LIST_HEAD(&wc->node);
spin_lock(&wctc4xxp_list_lock);
list_for_each_entry(cur, &wctc4xxp_list, node) {
if (cur->pos != pos) {
/* Add the new entry before the one here */
list_add_tail(&wc->node, &cur->node);
break;
} else {
++pos;
}
}
/* If we didn't already add the new entry to the list, add it now */
if (list_empty(&wc->node))
list_add_tail(&wc->node, &wctc4xxp_list);
spin_unlock(&wctc4xxp_list_lock);
return pos;
}
static void wctc4xxp_remove_from_device_list(struct wcdte *wc)
{
spin_lock(&wctc4xxp_list_lock);
list_del(&wc->node);
spin_unlock(&wctc4xxp_list_lock);
}
struct wctc4xxp_desc {
const char *short_name;
const char *long_name;
};
static struct wctc4xxp_desc wctc400p = {
.short_name = "tc400b",
.long_name = "Wildcard TC400P+TC400M",
};
static struct wctc4xxp_desc wctce400 = {
.short_name = "tce400",
.long_name = "Wildcard TCE400+TC400M",
};
static int __devinit
wctc4xxp_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int res, reg, position_on_list;
struct wcdte *wc = NULL;
struct wctc4xxp_desc *d = (struct wctc4xxp_desc *)ent->driver_data;
unsigned char g729_numchannels, g723_numchannels, min_numchannels;
unsigned char wctc4xxp_firmware_ver, wctc4xxp_firmware_ver_minor;
unsigned int complexfmts;
struct firmware embedded_firmware;
const struct firmware *firmware = &embedded_firmware;
#if !defined(HOTPLUG_FIRMWARE)
extern void _binary_dahdi_fw_tc400m_bin_size;
extern u8 _binary_dahdi_fw_tc400m_bin_start[];
#else
static const char tc400m_firmware[] = "dahdi-fw-tc400m.bin";
#endif
/* ------------------------------------------------------------------
* Setup the pure software constructs internal to this driver.
* --------------------------------------------------------------- */
wc = kzalloc(sizeof(*wc), GFP_KERNEL);
if (!wc)
return -ENOMEM;
position_on_list = wctc4xxp_add_to_device_list(wc);
snprintf(wc->board_name, sizeof(wc->board_name)-1, "%s%d",
d->short_name, position_on_list);
wc->iobase = pci_iomap(pdev, 1, 0);
wc->pdev = pdev;
wc->pos = position_on_list;
wc->variety = d->long_name;
wc->last_rx_seq_num = -1;
if (!request_mem_region(pci_resource_start(pdev, 1),
pci_resource_len(pdev, 1), wc->board_name)) {
dev_err(&pdev->dev, "IO Registers are in use by another "
"module.\n");
wctc4xxp_remove_from_device_list(wc);
kfree(wc);
return -EIO;
}
sema_init(&wc->chansem, 1);
spin_lock_init(&wc->reglock);
spin_lock_init(&wc->cmd_list_lock);
spin_lock_init(&wc->rx_list_lock);
spin_lock_init(&wc->rx_lock);
INIT_LIST_HEAD(&wc->cmd_list);
INIT_LIST_HEAD(&wc->waiting_for_response_list);
INIT_LIST_HEAD(&wc->rx_list);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&wc->deferred_work, deferred_work_func, wc);
#else
INIT_WORK(&wc->deferred_work, deferred_work_func);
#endif
init_waitqueue_head(&wc->waitq);
if (pci_set_dma_mask(wc->pdev, DMA_BIT_MASK(32))) {
release_mem_region(pci_resource_start(wc->pdev, 1),
pci_resource_len(wc->pdev, 1));
if (wc->iobase)
pci_iounmap(wc->pdev, wc->iobase);
pci_clear_mwi(wc->pdev);
dev_warn(&wc->pdev->dev, "No suitable DMA available.\n");
return -EIO;
}
wc->txd = kmalloc(sizeof(*wc->txd), GFP_KERNEL);
if (!wc->txd) {
res = -ENOMEM;
goto error_exit_swinit;
}
res = wctc4xxp_initialize_descriptor_ring(wc->pdev, wc->txd,
0xe0800000, DMA_TO_DEVICE);
if (res)
goto error_exit_swinit;
wc->rxd = kmalloc(sizeof(*wc->rxd), GFP_KERNEL);
if (!wc->rxd) {
res = -ENOMEM;
goto error_exit_swinit;
}
res = wctc4xxp_initialize_descriptor_ring(wc->pdev, wc->rxd, 0,
DMA_FROM_DEVICE);
if (res)
goto error_exit_swinit;
#if defined(HOTPLUG_FIRMWARE)
res = request_firmware(&firmware, tc400m_firmware, &wc->pdev->dev);
if (res || !firmware) {
dev_err(&wc->pdev->dev,
"Firmware %s not available from userspace. (%d)\n",
tc400m_firmware, res);
goto error_exit_swinit;
}
#else
embedded_firmware.data = _binary_dahdi_fw_tc400m_bin_start;
embedded_firmware.size = (size_t) &_binary_dahdi_fw_tc400m_bin_size;
#endif
wctc4xxp_firmware_ver = firmware->data[0];
wctc4xxp_firmware_ver_minor = firmware->data[16];
g729_numchannels = firmware->data[1];
g723_numchannels = firmware->data[2];
min_numchannels = min(g723_numchannels, g729_numchannels);
if (!mode || strlen(mode) < 4) {
sprintf(wc->complexname, "G.729a / G.723.1");
complexfmts = DAHDI_FORMAT_G729A | DAHDI_FORMAT_G723_1;
wc->numchannels = min_numchannels;
} else if (mode[3] == '9') { /* "G.729" */
sprintf(wc->complexname, "G.729a");
complexfmts = DAHDI_FORMAT_G729A;
wc->numchannels = g729_numchannels;
} else if (mode[3] == '3') { /* "G.723.1" */
sprintf(wc->complexname, "G.723.1");
complexfmts = DAHDI_FORMAT_G723_1;
wc->numchannels = g723_numchannels;
} else {
sprintf(wc->complexname, "G.729a / G.723.1");
complexfmts = DAHDI_FORMAT_G729A | DAHDI_FORMAT_G723_1;
wc->numchannels = min_numchannels;
}
res = initialize_encoders(wc, complexfmts);
if (res)
goto error_exit_swinit;
res = initialize_decoders(wc, complexfmts);
if (res)
goto error_exit_swinit;
if (DTE_DEBUG_NETWORK_IF & debug) {
res = wctc4xxp_net_register(wc);
if (res)
goto error_exit_swinit;
}
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 18)
wc->watchdog.function = wctc4xxp_watchdog;
wc->watchdog.data = (unsigned long)wc;
init_timer(&wc->watchdog);
# else
setup_timer(&wc->watchdog, wctc4xxp_watchdog, (unsigned long)wc);
# endif
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 18)
wc->polling.function = wctc4xxp_polling;
wc->polling.data = (unsigned long)wc;
init_timer(&wc->polling);
# else
setup_timer(&wc->polling, wctc4xxp_polling, (unsigned long)wc);
# endif
/* ------------------------------------------------------------------
* Load the firmware and start the DTE.
* --------------------------------------------------------------- */
res = pci_enable_device(pdev);
if (res) {
dev_err(&wc->pdev->dev, "Failed to enable device.\n");
goto error_exit_swinit;;
}
res = pci_set_mwi(wc->pdev);
if (res) {
dev_warn(&wc->pdev->dev,
"Failed to set Memory-Write Invalidate Command Bit..\n");
}
pci_set_master(pdev);
pci_set_drvdata(pdev, wc);
res = request_irq(pdev->irq, wctc4xxp_interrupt,
DAHDI_IRQ_SHARED, wc->board_name, wc);
if (res) {
dev_err(&wc->pdev->dev,
"Unable to request IRQ %d\n", pdev->irq);
if (firmware != &embedded_firmware)
release_firmware(firmware);
goto error_exit_hwinit;
}
res = wctc4xxp_hardware_init(wc);
if (res) {
if (firmware != &embedded_firmware)
release_firmware(firmware);
goto error_exit_hwinit;
}
wctc4xxp_enable_interrupts(wc);
wctc4xxp_start_dma(wc);
res = wctc4xxp_boot_processor(wc, firmware);
if (firmware != &embedded_firmware)
release_firmware(firmware);
if (res)
goto error_exit_hwinit;
#if defined(CONFIG_WCTC4XXP_POLLING)
wctc4xxp_enable_polling(wc);
#endif
res = wctc4xxp_setup_channels(wc);
if (res)
goto error_exit_hwinit;
/* \todo Read firmware version directly from tc400b.*/
dev_info(&wc->pdev->dev, "(%s) Transcoder support LOADED " \
"(firm ver = %d.%d)\n", wc->complexname, wctc4xxp_firmware_ver,
wctc4xxp_firmware_ver_minor);
reg = wctc4xxp_getctl(wc, 0x00fc);
DTE_DEBUG(DTE_DEBUG_GENERAL,
"debug: (post-boot) Reg fc is %08x\n", reg);
dev_info(&wc->pdev->dev, "Installed a Wildcard TC: %s\n", wc->variety);
DTE_DEBUG(DTE_DEBUG_GENERAL, "Operating in DEBUG mode.\n");
dahdi_transcoder_register(wc->uencode);
dahdi_transcoder_register(wc->udecode);
return 0;
error_exit_hwinit:
#if defined(CONFIG_WCTC4XXP_POLLING)
wctc4xxp_disable_polling(wc);
#endif
wctc4xxp_stop_dma(wc);
wctc4xxp_cleanup_command_list(wc);
free_irq(pdev->irq, wc);
pci_set_drvdata(pdev, NULL);
error_exit_swinit:
wctc4xxp_net_unregister(wc);
kfree(wc->encoders);
kfree(wc->decoders);
dahdi_transcoder_free(wc->uencode);
dahdi_transcoder_free(wc->udecode);
wctc4xxp_cleanup_descriptor_ring(wc->txd);
kfree(wc->txd);
wctc4xxp_cleanup_descriptor_ring(wc->rxd);
kfree(wc->rxd);
release_mem_region(pci_resource_start(wc->pdev, 1),
pci_resource_len(wc->pdev, 1));
if (wc->iobase)
pci_iounmap(wc->pdev, wc->iobase);
pci_clear_mwi(wc->pdev);
wctc4xxp_remove_from_device_list(wc);
kfree(wc);
return res;
}
static void wctc4xxp_cleanup_channels(struct wcdte *wc)
{
int i;
struct dahdi_transcoder_channel *dtc_en, *dtc_de;
for (i = 0; i < wc->numchannels; ++i) {
dtc_en = &(wc->uencode->channels[i]);
wctc4xxp_cleanup_channel_private(wc, dtc_en);
dtc_de = &(wc->udecode->channels[i]);
wctc4xxp_cleanup_channel_private(wc, dtc_de);
}
}
static void __devexit wctc4xxp_remove_one(struct pci_dev *pdev)
{
struct wcdte *wc = pci_get_drvdata(pdev);
if (!wc)
return;
wctc4xxp_remove_from_device_list(wc);
set_bit(DTE_SHUTDOWN, &wc->flags);
if (del_timer_sync(&wc->watchdog))
del_timer_sync(&wc->watchdog);
/* This should already be stopped, but it doesn't hurt to make sure. */
clear_bit(DTE_POLLING, &wc->flags);
if (del_timer_sync(&wc->polling))
del_timer_sync(&wc->polling);
wctc4xxp_net_unregister(wc);
/* Stop any DMA */
wctc4xxp_stop_dma(wc);
/* In case hardware is still there */
wctc4xxp_disable_interrupts(wc);
free_irq(pdev->irq, wc);
/* There isn't anything that would run in the workqueue that will wait
* on an interrupt. */
dahdi_transcoder_unregister(wc->udecode);
dahdi_transcoder_unregister(wc->uencode);
/* Free Resources */
release_mem_region(pci_resource_start(wc->pdev, 1),
pci_resource_len(wc->pdev, 1));
if (wc->iobase)
pci_iounmap(wc->pdev, wc->iobase);
pci_clear_mwi(wc->pdev);
wctc4xxp_cleanup_descriptor_ring(wc->txd);
kfree(wc->txd);
wctc4xxp_cleanup_descriptor_ring(wc->rxd);
kfree(wc->rxd);
wctc4xxp_cleanup_command_list(wc);
wctc4xxp_cleanup_channels(wc);
pci_set_drvdata(pdev, NULL);
dahdi_transcoder_free(wc->uencode);
dahdi_transcoder_free(wc->udecode);
kfree(wc->encoders);
kfree(wc->decoders);
kfree(wc);
}
static DEFINE_PCI_DEVICE_TABLE(wctc4xxp_pci_tbl) = {
{ 0xd161, 0x3400, PCI_ANY_ID, PCI_ANY_ID,
0, 0, (unsigned long) &wctc400p }, /* Digium board */
{ 0xd161, 0x8004, PCI_ANY_ID, PCI_ANY_ID,
0, 0, (unsigned long) &wctce400 }, /* Digium board */
{ 0 }
};
MODULE_DEVICE_TABLE(pci, wctc4xxp_pci_tbl);
static int wctc4xxp_suspend(struct pci_dev *pdev, pm_message_t state)
{
return -ENOSYS;
}
static struct pci_driver wctc4xxp_driver = {
.name = "wctc4xxp",
.probe = wctc4xxp_init_one,
.remove = __devexit_p(wctc4xxp_remove_one),
.id_table = wctc4xxp_pci_tbl,
.suspend = wctc4xxp_suspend,
};
static int __init wctc4xxp_init(void)
{
int res;
unsigned long cache_flags;
#if defined(CONFIG_SLUB) && (LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 22))
cache_flags = SLAB_HWCACHE_ALIGN | SLAB_STORE_USER | SLAB_DEBUG_FREE;
#else
cache_flags = SLAB_HWCACHE_ALIGN;
#endif
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 23)
cmd_cache = kmem_cache_create(THIS_MODULE->name, sizeof(struct tcb),
0, cache_flags, NULL, NULL);
# else
cmd_cache = kmem_cache_create(THIS_MODULE->name, sizeof(struct tcb),
0, cache_flags, NULL);
# endif
if (!cmd_cache)
return -ENOMEM;
spin_lock_init(&wctc4xxp_list_lock);
INIT_LIST_HEAD(&wctc4xxp_list);
res = dahdi_pci_module(&wctc4xxp_driver);
if (res) {
kmem_cache_destroy(cmd_cache);
return -ENODEV;
}
return 0;
}
static void __exit wctc4xxp_cleanup(void)
{
pci_unregister_driver(&wctc4xxp_driver);
kmem_cache_destroy(cmd_cache);
}
module_param(debug, int, S_IRUGO | S_IWUSR);
module_param(mode, charp, S_IRUGO);
MODULE_PARM_DESC(mode, "'g729', 'g723.1', or 'any'. Default 'any'.");
MODULE_DESCRIPTION("Wildcard TC400P+TC400M Driver");
MODULE_AUTHOR("Digium Incorporated <support@digium.com>");
MODULE_LICENSE("GPL");
module_init(wctc4xxp_init);
module_exit(wctc4xxp_cleanup);