dahdi-linux/drivers/dahdi/wctdm24xxp/base.c

6226 lines
166 KiB
C
Raw Normal View History

/*
* Wildcard TDM2400P TDM FXS/FXO Interface Driver for DAHDI Telephony interface
*
* Written by Mark Spencer <markster@digium.com>
* Support for TDM800P and VPM150M by Matthew Fredrickson <creslin@digium.com>
*
* Support for Hx8 by Andrew Kohlsmith <akohlsmith@mixdown.ca> and Matthew
* Fredrickson <creslin@digium.com>
*
* Copyright (C) 2005 - 2011 Digium, Inc.
* All rights reserved.
*
* Sections for QRV cards written by Jim Dixon <jim@lambdatel.com>
* Copyright (C) 2006, Jim Dixon and QRV Communications
* All rights reserved.
*
*/
/*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2 as published by the
* Free Software Foundation. See the LICENSE file included with
* this program for more details.
*/
/* For QRV DRI cards, gain is signed short, expressed in hundredths of
db (in reference to 1v Peak @ 1000Hz) , as follows:
Rx Gain: -11.99 to 15.52 db
Tx Gain - No Pre-Emphasis: -35.99 to 12.00 db
Tx Gain - W/Pre-Emphasis: -23.99 to 0.00 db
*/
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/moduleparam.h>
#include <linux/firmware.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)
#include <linux/semaphore.h>
#else
#include <asm/semaphore.h>
#endif
#include <linux/crc32.h>
#include <stdbool.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 30)
/* Define this if you would like to load the modules in parallel. While this
* can speed up loads when multiple cards handled by this driver are installed,
* it also makes it impossible to abort module loads with ctrl-c */
#undef USE_ASYNC_INIT
#include <linux/async.h>
#else
#undef USE_ASYNC_INIT
#endif
#include <dahdi/kernel.h>
#include <dahdi/wctdm_user.h>
#include "proslic.h"
#include "wctdm24xxp.h"
#include "xhfc.h"
#include "adt_lec.h"
#include "voicebus/GpakCust.h"
#include "voicebus/GpakApi.h"
#if VOICEBUS_SFRAME_SIZE != SFRAME_SIZE
#error SFRAME_SIZE must match the VOICEBUS_SFRAME_SIZE
#endif
/*
Experimental max loop current limit for the proslic
Loop current limit is from 20 mA to 41 mA in steps of 3
(according to datasheet)
So set the value below to:
0x00 : 20mA (default)
0x01 : 23mA
0x02 : 26mA
0x03 : 29mA
0x04 : 32mA
0x05 : 35mA
0x06 : 37mA
0x07 : 41mA
*/
static int loopcurrent = 20;
/* Following define is a logical exclusive OR to determine if the polarity of an fxs line is to be reversed.
* The items taken into account are:
* overall polarity reversal for the module,
* polarity reversal for the port,
* and the state of the line reversal MWI indicator
*/
#define POLARITY_XOR(fxs) \
((reversepolarity != 0) ^ ((fxs)->reversepolarity != 0) ^ \
((fxs)->vmwi_linereverse != 0))
static int reversepolarity = 0;
static alpha indirect_regs[] =
{
{0,255,"DTMF_ROW_0_PEAK",0x55C2},
{1,255,"DTMF_ROW_1_PEAK",0x51E6},
{2,255,"DTMF_ROW2_PEAK",0x4B85},
{3,255,"DTMF_ROW3_PEAK",0x4937},
{4,255,"DTMF_COL1_PEAK",0x3333},
{5,255,"DTMF_FWD_TWIST",0x0202},
{6,255,"DTMF_RVS_TWIST",0x0202},
{7,255,"DTMF_ROW_RATIO_TRES",0x0198},
{8,255,"DTMF_COL_RATIO_TRES",0x0198},
{9,255,"DTMF_ROW_2ND_ARM",0x0611},
{10,255,"DTMF_COL_2ND_ARM",0x0202},
{11,255,"DTMF_PWR_MIN_TRES",0x00E5},
{12,255,"DTMF_OT_LIM_TRES",0x0A1C},
{13,0,"OSC1_COEF",0x7B30},
{14,1,"OSC1X",0x0063},
{15,2,"OSC1Y",0x0000},
{16,3,"OSC2_COEF",0x7870},
{17,4,"OSC2X",0x007D},
{18,5,"OSC2Y",0x0000},
{19,6,"RING_V_OFF",0x0000},
{20,7,"RING_OSC",0x7EF0},
{21,8,"RING_X",0x0160},
{22,9,"RING_Y",0x0000},
{23,255,"PULSE_ENVEL",0x2000},
{24,255,"PULSE_X",0x2000},
{25,255,"PULSE_Y",0x0000},
//{26,13,"RECV_DIGITAL_GAIN",0x4000}, // playback volume set lower
{26,13,"RECV_DIGITAL_GAIN",0x2000}, // playback volume set lower
{27,14,"XMIT_DIGITAL_GAIN",0x4000},
//{27,14,"XMIT_DIGITAL_GAIN",0x2000},
{28,15,"LOOP_CLOSE_TRES",0x1000},
{29,16,"RING_TRIP_TRES",0x3600},
{30,17,"COMMON_MIN_TRES",0x1000},
{31,18,"COMMON_MAX_TRES",0x0200},
{32,19,"PWR_ALARM_Q1Q2",0x07C0},
{33,20,"PWR_ALARM_Q3Q4", 0x4C00 /* 0x2600 */},
{34,21,"PWR_ALARM_Q5Q6",0x1B80},
{35,22,"LOOP_CLOSURE_FILTER",0x8000},
{36,23,"RING_TRIP_FILTER",0x0320},
{37,24,"TERM_LP_POLE_Q1Q2",0x008C},
{38,25,"TERM_LP_POLE_Q3Q4",0x0100},
{39,26,"TERM_LP_POLE_Q5Q6",0x0010},
{40,27,"CM_BIAS_RINGING",0x0C00},
{41,64,"DCDC_MIN_V",0x0C00},
{42,255,"DCDC_XTRA",0x1000},
{43,66,"LOOP_CLOSE_TRES_LOW",0x1000},
};
/* names of HWEC modules */
static const char *vpmadt032_name = "VPMADT032";
static const char *vpmoct_name = "VPMOCT032";
/* Undefine to enable Power alarm / Transistor debug -- note: do not
enable for normal operation! */
/* #define PAQ_DEBUG */
#define DEBUG_CARD (1 << 0)
#define DEBUG_ECHOCAN (1 << 1)
#include "fxo_modes.h"
struct wctdm_desc {
const char *name;
const int flags;
const int ports;
};
static const struct wctdm_desc wctdm2400 = { "Wildcard TDM2400P", 0, 24 };
static const struct wctdm_desc wctdm800 = { "Wildcard TDM800P", 0, 8 };
static const struct wctdm_desc wctdm410 = { "Wildcard TDM410P", 0, 4 };
static const struct wctdm_desc wcaex2400 = { "Wildcard AEX2400", FLAG_EXPRESS, 24 };
static const struct wctdm_desc wcaex800 = { "Wildcard AEX800", FLAG_EXPRESS, 8 };
static const struct wctdm_desc wcaex410 = { "Wildcard AEX410", FLAG_EXPRESS, 4 };
static const struct wctdm_desc wcha80000 = { "HA8-0000", 0, 8 };
static const struct wctdm_desc wchb80000 = { "HB8-0000", FLAG_EXPRESS, 8 };
/**
* Returns true if the card is one of the Hybrid Digital Analog Cards.
*/
static inline bool is_hx8(const struct wctdm *wc)
{
return (&wcha80000 == wc->desc) || (&wchb80000 == wc->desc);
}
static inline struct dahdi_chan *
get_dahdi_chan(const struct wctdm *wc, struct wctdm_module *const mod)
{
return wc->aspan->span.chans[mod->card];
}
static inline void
mod_hooksig(struct wctdm *wc, struct wctdm_module *mod, enum dahdi_rxsig rxsig)
{
dahdi_hooksig(get_dahdi_chan(wc, mod), rxsig);
}
struct wctdm *ifaces[WC_MAX_IFACES];
DEFINE_SEMAPHORE(ifacelock);
static void wctdm_release(struct wctdm *wc);
static int fxovoltage = 0;
static unsigned int battdebounce;
static unsigned int battalarm;
static unsigned int battthresh;
static int debug = 0;
#ifdef DEBUG
static int robust = 0;
static int digitalloopback;
#endif
static int lowpower = 0;
static int boostringer = 0;
static int fastringer = 0;
static int _opermode = 0;
static char *opermode = "FCC";
static int fxshonormode = 0;
static int alawoverride = 0;
static char *companding = "auto";
static int fastpickup = -1; /* -1 auto, 0 no, 1 yes */
static int fxotxgain = 0;
static int fxorxgain = 0;
static int fxstxgain = 0;
static int fxsrxgain = 0;
static int nativebridge = 0;
static int ringdebounce = DEFAULT_RING_DEBOUNCE;
static int latency = VOICEBUS_DEFAULT_LATENCY;
static unsigned int max_latency = VOICEBUS_DEFAULT_MAXLATENCY;
static int forceload;
#define MS_PER_HOOKCHECK (1)
#define NEONMWI_ON_DEBOUNCE (100/MS_PER_HOOKCHECK)
static int neonmwi_monitor = 0; /* Note: this causes use of full wave ring detect */
static int neonmwi_level = 75; /* neon mwi trip voltage */
static int neonmwi_envelope = 10;
static int neonmwi_offlimit = 16000; /* Time in milliseconds the monitor is checked before saying no message is waiting */
static int neonmwi_offlimit_cycles; /* Time in milliseconds the monitor is checked before saying no message is waiting */
static int vpmsupport = 1;
static int vpmnlptype = DEFAULT_NLPTYPE;
static int vpmnlpthresh = DEFAULT_NLPTHRESH;
static int vpmnlpmaxsupp = DEFAULT_NLPMAXSUPP;
static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec);
static const struct dahdi_echocan_features vpm_ec_features = {
.NLP_automatic = 1,
.CED_tx_detect = 1,
.CED_rx_detect = 1,
};
static const struct dahdi_echocan_ops vpm_ec_ops = {
.echocan_free = echocan_free,
};
static int
wctdm_init_proslic(struct wctdm *wc, struct wctdm_module *const mod, int fast,
int manual, int sane);
static void set_offsets(struct wctdm_module *const mod, int altcs)
{
int card = mod->card;
int bit;
mod->subaddr = (altcs) ? 0 : (mod->card & 0x3);
for (bit = 0; bit < ARRAY_SIZE(mod->offsets); ++bit) {
/* Let's add some trickery to make the TDM410 work */
if (altcs == 3) {
if (card == 2) {
card = 4;
altcs = 0;
} else if (card == 3) {
card = 5;
altcs = 2;
}
}
mod->offsets[bit] = ((((card & 0x3) * 3 + bit) * 7) +
(card >> 2) + altcs +
((altcs) ? -21 : 0));
}
}
static inline __attribute_const__ int
CMD_BYTE(const struct wctdm_module *const mod, const int bit)
{
return mod->offsets[bit];
}
static inline __attribute_const__ int VPM_CMD_BYTE(int timeslot, int bit)
{
return ((((timeslot) & 0x3) * 3 + (bit)) * 7) + ((timeslot) >> 2);
}
typedef int (*bg_work_func_t)(struct wctdm *wc, unsigned long data);
struct bg {
struct workqueue_struct *wq;
struct work_struct work;
struct completion complete;
struct wctdm *wc;
bg_work_func_t fn;
unsigned long param;
int ret;
};
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void bg_work_func(void *data)
{
struct bg *bg = data;
#else
static void bg_work_func(struct work_struct *work)
{
struct bg *bg = container_of(work, struct bg, work);
#endif
bg->ret = bg->fn(bg->wc, bg->param);
complete(&bg->complete);
}
/**
* bg_create - Call a function running in a background thread.
* @wc: The board structure passed to fn
* @fn: The function to run in it's own thread.
* @parma: An extra parameter to pass to the fn.
*
* Returns NULL if the thread could not be created, otherwise a pointer to be
* passed to bg_join in order to get the return value.
*
* The function 'fn' will be run in a new thread. The return value is the
* return from the bg_join function.
*
* This would probably be best served by concurrency managed workqueues before
* merging, but this will at least work on the older kernels tht DAHDI
* supports.
*/
static struct bg *
bg_create(struct wctdm *wc, bg_work_func_t fn, unsigned long param)
{
struct bg *bg;
bg = kzalloc(sizeof(*bg), GFP_KERNEL);
if (!bg)
return NULL;
bg->wq = create_singlethread_workqueue("wctdm_bg");
if (!bg->wq) {
kfree(bg);
return NULL;
}
init_completion(&bg->complete);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&bg->work, bg_work_func, bg);
#else
INIT_WORK(&bg->work, bg_work_func);
#endif
bg->wc = wc;
bg->fn = fn;
bg->param = param;
queue_work(bg->wq, &bg->work);
return bg;
}
/**
* bg_join - Wait for a background function to complete and get the result.
* @bg: Pointer returned from the bg_create call.
*
* Returns the result of the function passed to bg_create.
*/
static int bg_join(struct bg *bg)
{
int ret = -ERESTARTSYS;
if (unlikely(!bg))
return -EINVAL;
while (ret)
ret = wait_for_completion_interruptible(&bg->complete);
ret = bg->ret;
destroy_workqueue(bg->wq);
kfree(bg);
return ret;
}
static void
setchanconfig_from_state(struct vpmadt032 *vpm, int channel,
GpakChannelConfig_t *chanconfig)
{
GpakEcanParms_t *p;
BUG_ON(!vpm);
chanconfig->PcmInPortA = 3;
chanconfig->PcmInSlotA = channel;
chanconfig->PcmOutPortA = SerialPortNull;
chanconfig->PcmOutSlotA = channel;
chanconfig->PcmInPortB = 2;
chanconfig->PcmInSlotB = channel;
chanconfig->PcmOutPortB = 3;
chanconfig->PcmOutSlotB = channel;
chanconfig->ToneTypesA = Null_tone;
chanconfig->MuteToneA = Disabled;
chanconfig->FaxCngDetA = Disabled;
chanconfig->ToneTypesB = Null_tone;
chanconfig->EcanEnableA = Enabled;
chanconfig->EcanEnableB = Disabled;
chanconfig->MuteToneB = Disabled;
chanconfig->FaxCngDetB = Disabled;
/* The software companding will be overridden on a channel by channel
* basis when the channel is enabled. */
chanconfig->SoftwareCompand = cmpPCMU;
chanconfig->FrameRate = rate2ms;
p = &chanconfig->EcanParametersA;
vpmadt032_get_default_parameters(p);
p->EcanNlpType = vpm->curecstate[channel].nlp_type;
p->EcanNlpThreshold = vpm->curecstate[channel].nlp_threshold;
p->EcanNlpMaxSuppress = vpm->curecstate[channel].nlp_max_suppress;
memcpy(&chanconfig->EcanParametersB,
&chanconfig->EcanParametersA,
sizeof(chanconfig->EcanParametersB));
}
struct vpmadt032_channel_setup {
struct work_struct work;
struct wctdm *wc;
};
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void vpm_setup_work_func(void *data)
{
struct vpmadt032_channel_setup *setup = data;
#else
static void vpm_setup_work_func(struct work_struct *work)
{
struct vpmadt032_channel_setup *setup =
container_of(work, struct vpmadt032_channel_setup, work);
#endif
int i;
int res;
GpakChannelConfig_t chanconfig;
GPAK_ChannelConfigStat_t cstatus;
GPAK_AlgControlStat_t algstatus;
GpakPortConfig_t portconfig = {0};
gpakConfigPortStatus_t configportstatus;
GPAK_PortConfigStat_t pstatus;
struct vpmadt032 *vpm;
struct wctdm *const wc = setup->wc;
WARN_ON(!wc);
WARN_ON(!wc->vpmadt032);
if (unlikely(!wc || !wc->vpmadt032))
return;
vpm = wc->vpmadt032;
/* First Serial Port config */
portconfig.SlotsSelect1 = SlotCfgNone;
portconfig.FirstBlockNum1 = 0;
portconfig.FirstSlotMask1 = 0x0000;
portconfig.SecBlockNum1 = 1;
portconfig.SecSlotMask1 = 0x0000;
portconfig.SerialWordSize1 = SerWordSize8;
portconfig.CompandingMode1 = cmpNone;
portconfig.TxFrameSyncPolarity1 = FrameSyncActHigh;
portconfig.RxFrameSyncPolarity1 = FrameSyncActHigh;
portconfig.TxClockPolarity1 = SerClockActHigh;
portconfig.RxClockPolarity1 = SerClockActHigh;
portconfig.TxDataDelay1 = DataDelay0;
portconfig.RxDataDelay1 = DataDelay0;
portconfig.DxDelay1 = Disabled;
portconfig.ThirdSlotMask1 = 0x0000;
portconfig.FouthSlotMask1 = 0x0000;
portconfig.FifthSlotMask1 = 0x0000;
portconfig.SixthSlotMask1 = 0x0000;
portconfig.SevenSlotMask1 = 0x0000;
portconfig.EightSlotMask1 = 0x0000;
/* Second Serial Port config */
portconfig.SlotsSelect2 = SlotCfg2Groups;
portconfig.FirstBlockNum2 = 0;
portconfig.FirstSlotMask2 = 0xffff;
portconfig.SecBlockNum2 = 1;
portconfig.SecSlotMask2 = 0xffff;
portconfig.SerialWordSize2 = SerWordSize8;
portconfig.CompandingMode2 = cmpNone;
portconfig.TxFrameSyncPolarity2 = FrameSyncActHigh;
portconfig.RxFrameSyncPolarity2 = FrameSyncActHigh;
portconfig.TxClockPolarity2 = SerClockActHigh;
portconfig.RxClockPolarity2 = SerClockActLow;
portconfig.TxDataDelay2 = DataDelay0;
portconfig.RxDataDelay2 = DataDelay0;
portconfig.DxDelay2 = Disabled;
portconfig.ThirdSlotMask2 = 0x0000;
portconfig.FouthSlotMask2 = 0x0000;
portconfig.FifthSlotMask2 = 0x0000;
portconfig.SixthSlotMask2 = 0x0000;
portconfig.SevenSlotMask2 = 0x0000;
portconfig.EightSlotMask2 = 0x0000;
/* Third Serial Port Config */
portconfig.SlotsSelect3 = SlotCfg2Groups;
portconfig.FirstBlockNum3 = 0;
portconfig.FirstSlotMask3 = 0xffff;
portconfig.SecBlockNum3 = 1;
portconfig.SecSlotMask3 = 0xffff;
portconfig.SerialWordSize3 = SerWordSize8;
portconfig.CompandingMode3 = cmpNone;
portconfig.TxFrameSyncPolarity3 = FrameSyncActHigh;
portconfig.RxFrameSyncPolarity3 = FrameSyncActHigh;
portconfig.TxClockPolarity3 = SerClockActHigh;
portconfig.RxClockPolarity3 = SerClockActLow;
portconfig.TxDataDelay3 = DataDelay0;
portconfig.RxDataDelay3 = DataDelay0;
portconfig.DxDelay3 = Disabled;
portconfig.ThirdSlotMask3 = 0x0000;
portconfig.FouthSlotMask3 = 0x0000;
portconfig.FifthSlotMask3 = 0x0000;
portconfig.SixthSlotMask3 = 0x0000;
portconfig.SevenSlotMask3 = 0x0000;
portconfig.EightSlotMask3 = 0x0000;
if ((configportstatus = gpakConfigurePorts(vpm->dspid, &portconfig, &pstatus))) {
dev_notice(&wc->vb.pdev->dev, "Configuration of ports failed (%d)!\n", configportstatus);
return;
} else {
if (vpm->options.debug & DEBUG_ECHOCAN)
dev_info(&wc->vb.pdev->dev, "Configured McBSP ports successfully\n");
}
res = gpakPingDsp(vpm->dspid, &vpm->version);
if (res) {
dev_notice(&wc->vb.pdev->dev, "Error pinging DSP (%d)\n", res);
return;
}
for (i = 0; i < vpm->options.channels; ++i) {
vpm->curecstate[i].tap_length = 0;
vpm->curecstate[i].nlp_type = vpm->options.vpmnlptype;
vpm->curecstate[i].nlp_threshold = vpm->options.vpmnlpthresh;
vpm->curecstate[i].nlp_max_suppress =
vpm->options.vpmnlpmaxsupp;
vpm->curecstate[i].companding = ADT_COMP_ULAW;
vpm->setchanconfig_from_state(vpm, i, &chanconfig);
res = gpakConfigureChannel(vpm->dspid, i, tdmToTdm,
&chanconfig, &cstatus);
if (res) {
dev_notice(&wc->vb.pdev->dev,
"Unable to configure channel #%d (%d)",
i, res);
if (res == 1)
printk(KERN_CONT ", reason %d", cstatus);
printk(KERN_CONT "\n");
goto exit;
}
res = gpakAlgControl(vpm->dspid, i, BypassEcanA, &algstatus);
if (res) {
dev_notice(&wc->vb.pdev->dev,
"Unable to disable echo can on channel %d "
"(reason %d:%d)\n", i + 1, res, algstatus);
goto exit;
}
res = gpakAlgControl(vpm->dspid, i,
BypassSwCompanding, &algstatus);
if (res) {
dev_notice(&wc->vb.pdev->dev,
"Unable to disable echo can on channel %d "
"(reason %d:%d)\n", i + 1, res, algstatus);
goto exit;
}
}
res = gpakPingDsp(vpm->dspid, &vpm->version);
if (res) {
dev_notice(&wc->vb.pdev->dev, "Error pinging DSP (%d)\n", res);
goto exit;
}
set_bit(VPM150M_ACTIVE, &vpm->control);
exit:
kfree(setup);
}
static int config_vpmadt032(struct vpmadt032 *vpm, struct wctdm *wc)
{
struct vpmadt032_channel_setup *setup;
/* Because the channel configuration can take such a long time, let's
* move this out onto the VPM workqueue so the system can proceeded
* with startup. */
setup = kzalloc(sizeof(*setup), GFP_KERNEL);
if (!setup)
return -ENOMEM;
setup->wc = wc;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&setup->work, vpm_setup_work_func, setup);
#else
INIT_WORK(&setup->work, vpm_setup_work_func);
#endif
queue_work(vpm->wq, &setup->work);
return 0;
}
/**
* is_good_frame() - Whether the SFRAME received was one sent.
*
*/
static inline bool is_good_frame(const u8 *sframe)
{
const u8 a = sframe[0*(EFRAME_SIZE+EFRAME_GAP) + (EFRAME_SIZE+1)];
const u8 b = sframe[1*(EFRAME_SIZE+EFRAME_GAP) + (EFRAME_SIZE+1)];
return a != b;
}
static inline void cmd_dequeue_vpmoct(struct wctdm *wc, u8 *eframe)
{
struct vpmoct *vpm = wc->vpmoct;
struct vpmoct_cmd *cmd;
u8 i;
/* Pop a command off pending list */
spin_lock(&vpm->list_lock);
if (list_empty(&vpm->pending_list)) {
spin_unlock(&vpm->list_lock);
return;
}
cmd = list_entry(vpm->pending_list.next, struct vpmoct_cmd, node);
if (is_vpmoct_cmd_read(cmd))
list_move_tail(&cmd->node, &vpm->active_list);
else
list_del_init(&cmd->node);
/* Skip audio (24 bytes) and ignore first 6 timeslots */
eframe += 30;
/* Save ident so we can match the return eframe */
cmd->txident = wc->txident;
/* We have four timeslots to work with for a regular spi packet */
/* TODO: Create debug flag for this in dev */
/* The vpmoct requires a "sync" spi command as the first three bytes
* of an eframe */
eframe[7*0] = 0x12;
eframe[7*1] = 0x34;
eframe[7*2] = 0x56;
eframe[7*3] = cmd->command;
eframe[7*4] = cmd->address;
eframe[7*5] = cmd->data[0];
for (i = 1; i < cmd->chunksize; i++)
eframe[(7*5)+7*i] = cmd->data[i];
/* Clean up fire-and-forget messages from memory */
if (list_empty(&cmd->node))
kfree(cmd);
spin_unlock(&vpm->list_lock);
}
static inline void cmd_dequeue_vpmadt032(struct wctdm *wc, u8 *eframe)
{
struct vpmadt032_cmd *curcmd = NULL;
struct vpmadt032 *vpmadt032 = wc->vpmadt032;
int x;
unsigned char leds = ~((wc->framecount / 1000) % 8) & 0x7;
/* Skip audio */
eframe += 24;
if (test_bit(VPM150M_HPIRESET, &vpmadt032->control)) {
if (debug & DEBUG_ECHOCAN)
dev_info(&wc->vb.pdev->dev, "HW Resetting VPMADT032...\n");
for (x = 24; x < 28; x++) {
if (x == 24) {
if (test_and_clear_bit(VPM150M_HPIRESET,
&vpmadt032->control)) {
eframe[VPM_CMD_BYTE(x, 0)] = 0x0b;
} else {
eframe[VPM_CMD_BYTE(x, 0)] = leds;
}
} else {
eframe[VPM_CMD_BYTE(x, 0)] = leds;
}
eframe[VPM_CMD_BYTE(x, 1)] = 0;
eframe[VPM_CMD_BYTE(x, 2)] = 0x00;
}
return;
}
if ((curcmd = vpmadt032_get_ready_cmd(vpmadt032))) {
curcmd->txident = wc->txident;
#if 0
// if (printk_ratelimit())
dev_info(&wc->vb.pdev->dev, "Transmitting txident = %d, desc = 0x%x, addr = 0x%x, data = 0x%x\n", curcmd->txident, curcmd->desc, curcmd->address, curcmd->data);
#endif
if (curcmd->desc & __VPM150M_RWPAGE) {
/* Set CTRL access to page*/
eframe[VPM_CMD_BYTE(24, 0)] = (0x8 << 4);
eframe[VPM_CMD_BYTE(24, 1)] = 0;
eframe[VPM_CMD_BYTE(24, 2)] = 0x20;
/* Do a page write */
if (curcmd->desc & __VPM150M_WR)
eframe[VPM_CMD_BYTE(25, 0)] = ((0x8 | 0x4) << 4);
else
eframe[VPM_CMD_BYTE(25, 0)] = ((0x8 | 0x4 | 0x1) << 4);
eframe[VPM_CMD_BYTE(25, 1)] = 0;
if (curcmd->desc & __VPM150M_WR)
eframe[VPM_CMD_BYTE(25, 2)] = curcmd->data & 0xf;
else
eframe[VPM_CMD_BYTE(25, 2)] = 0;
/* Clear XADD */
eframe[VPM_CMD_BYTE(26, 0)] = (0x8 << 4);
eframe[VPM_CMD_BYTE(26, 1)] = 0;
eframe[VPM_CMD_BYTE(26, 2)] = 0;
/* Fill in to buffer to size */
eframe[VPM_CMD_BYTE(27, 0)] = 0;
eframe[VPM_CMD_BYTE(27, 1)] = 0;
eframe[VPM_CMD_BYTE(27, 2)] = 0;
} else {
/* Set address */
eframe[VPM_CMD_BYTE(24, 0)] = ((0x8 | 0x4) << 4);
eframe[VPM_CMD_BYTE(24, 1)] = (curcmd->address >> 8) & 0xff;
eframe[VPM_CMD_BYTE(24, 2)] = curcmd->address & 0xff;
/* Send/Get our data */
eframe[VPM_CMD_BYTE(25, 0)] = (curcmd->desc & __VPM150M_WR) ?
((0x8 | (0x3 << 1)) << 4) : ((0x8 | (0x3 << 1) | 0x1) << 4);
eframe[VPM_CMD_BYTE(25, 1)] = (curcmd->data >> 8) & 0xff;
eframe[VPM_CMD_BYTE(25, 2)] = curcmd->data & 0xff;
eframe[VPM_CMD_BYTE(26, 0)] = 0;
eframe[VPM_CMD_BYTE(26, 1)] = 0;
eframe[VPM_CMD_BYTE(26, 2)] = 0;
/* Fill in the rest */
eframe[VPM_CMD_BYTE(27, 0)] = 0;
eframe[VPM_CMD_BYTE(27, 1)] = 0;
eframe[VPM_CMD_BYTE(27, 2)] = 0;
}
} else if (test_and_clear_bit(VPM150M_SWRESET, &vpmadt032->control)) {
for (x = 24; x < 28; x++) {
if (x == 24)
eframe[VPM_CMD_BYTE(x, 0)] = (0x8 << 4);
else
eframe[VPM_CMD_BYTE(x, 0)] = 0x00;
eframe[VPM_CMD_BYTE(x, 1)] = 0;
if (x == 24)
eframe[VPM_CMD_BYTE(x, 2)] = 0x01;
else
eframe[VPM_CMD_BYTE(x, 2)] = 0x00;
}
} else {
for (x = 24; x < 28; x++) {
eframe[VPM_CMD_BYTE(x, 0)] = 0x00;
eframe[VPM_CMD_BYTE(x, 1)] = 0x00;
eframe[VPM_CMD_BYTE(x, 2)] = 0x00;
}
}
/* Add our leds in */
for (x = 24; x < 28; x++) {
eframe[VPM_CMD_BYTE(x, 0)] |= leds;
}
}
/* Call with wc->reglock held and local interrupts disabled */
static void _cmd_dequeue(struct wctdm *wc, u8 *eframe, int card, int pos)
{
struct wctdm_module *const mod = &wc->mods[card];
unsigned int curcmd=0;
/* QRV only use commands relating to the first channel */
if ((card & 0x03) && (mod->type == QRV))
return;
/* Skip audio */
eframe += 24;
/* Search for something waiting to transmit */
if (pos) {
if (!list_empty(&mod->pending_cmds)) {
struct wctdm_cmd *const cmd =
list_entry(mod->pending_cmds.next,
struct wctdm_cmd, node);
curcmd = cmd->cmd;
cmd->ident = wc->txident;
list_move_tail(&cmd->node, &mod->active_cmds);
}
}
if (!curcmd) {
/* If nothing else, use filler */
switch (mod->type) {
case FXS:
curcmd = CMD_RD(LINE_STATE);
break;
case FXO:
curcmd = CMD_RD(12);
break;
case BRI:
curcmd = 0x101010;
break;
case QRV:
curcmd = CMD_RD(3);
break;
default:
break;
}
}
switch (mod->type) {
case FXS:
eframe[CMD_BYTE(mod, 0)] = (1 << (mod->subaddr));
if (curcmd & __CMD_WR)
eframe[CMD_BYTE(mod, 1)] = (curcmd >> 8) & 0x7f;
else
eframe[CMD_BYTE(mod, 1)] = 0x80 | ((curcmd >> 8) & 0x7f);
eframe[CMD_BYTE(mod, 2)] = curcmd & 0xff;
break;
case FXO:
{
static const int ADDRS[4] = {0x00, 0x08, 0x04, 0x0c};
if (curcmd & __CMD_WR)
eframe[CMD_BYTE(mod, 0)] = 0x20 | ADDRS[mod->subaddr];
else
eframe[CMD_BYTE(mod, 0)] = 0x60 | ADDRS[mod->subaddr];
eframe[CMD_BYTE(mod, 1)] = (curcmd >> 8) & 0xff;
eframe[CMD_BYTE(mod, 2)] = curcmd & 0xff;
break;
}
case FXSINIT:
/* Special case, we initialize the FXS's into the three-byte command mode then
switch to the regular mode. To send it into thee byte mode, treat the path as
6 two-byte commands and in the last one we initialize register 0 to 0x80. All modules
read this as the command to switch to daisy chain mode and we're done. */
eframe[CMD_BYTE(mod, 0)] = 0x00;
eframe[CMD_BYTE(mod, 1)] = 0x00;
if ((card & 0x1) == 0x1)
eframe[CMD_BYTE(mod, 2)] = 0x80;
else
eframe[CMD_BYTE(mod, 2)] = 0x00;
break;
case BRI:
if (unlikely((curcmd != 0x101010) && (curcmd & 0x1010) == 0x1010)) /* b400m CPLD */
eframe[CMD_BYTE(mod, 0)] = 0x55;
else /* xhfc */
eframe[CMD_BYTE(mod, 0)] = 0x10;
eframe[CMD_BYTE(mod, 1)] = (curcmd >> 8) & 0xff;
eframe[CMD_BYTE(mod, 2)] = curcmd & 0xff;
break;
case QRV:
eframe[CMD_BYTE(mod, 0)] = 0x00;
if (!curcmd) {
eframe[CMD_BYTE(mod, 1)] = 0x00;
eframe[CMD_BYTE(mod, 2)] = 0x00;
} else {
if (curcmd & __CMD_WR)
eframe[CMD_BYTE(mod, 1)] = 0x40 | ((curcmd >> 8) & 0x3f);
else
eframe[CMD_BYTE(mod, 1)] = 0xc0 | ((curcmd >> 8) & 0x3f);
eframe[CMD_BYTE(mod, 2)] = curcmd & 0xff;
}
break;
case NONE:
eframe[CMD_BYTE(mod, 0)] = 0x10;
eframe[CMD_BYTE(mod, 1)] = 0x10;
eframe[CMD_BYTE(mod, 2)] = 0x10;
break;
}
}
static inline void cmd_decipher_vpmoct(struct wctdm *wc, const u8 *eframe)
{
struct vpmoct *vpm = wc->vpmoct;
struct vpmoct_cmd *cmd;
int i;
/* Skip audio and first 6 timeslots */
eframe += 30;
spin_lock(&vpm->list_lock);
/* No command to handle, just exit */
if (list_empty(&vpm->active_list)) {
spin_unlock(&vpm->list_lock);
return;
}
cmd = list_entry(vpm->active_list.next, struct vpmoct_cmd, node);
if (wc->rxident == cmd->txident)
list_del_init(&cmd->node);
else
cmd = NULL;
spin_unlock(&vpm->list_lock);
if (!cmd)
return;
/* Store result, Ignoring the first "sync spi command" bytes */
cmd->command = eframe[7*3];
cmd->address = eframe[7*4];
for (i = 0; i < cmd->chunksize; ++i)
cmd->data[i] = eframe[7*(5+i)];
complete(&cmd->complete);
}
static inline void cmd_decipher_vpmadt032(struct wctdm *wc, const u8 *eframe)
{
struct vpmadt032 *const vpm = wc->vpmadt032;
struct vpmadt032_cmd *cmd;
BUG_ON(!vpm);
/* If the hardware is not processing any commands currently, then
* there is nothing for us to do here. */
if (list_empty(&vpm->active_cmds)) {
return;
}
spin_lock(&vpm->list_lock);
cmd = list_entry(vpm->active_cmds.next, struct vpmadt032_cmd, node);
if (wc->rxident == cmd->txident) {
list_del_init(&cmd->node);
} else {
cmd = NULL;
}
spin_unlock(&vpm->list_lock);
if (!cmd)
return;
/* Skip audio */
eframe += 24;
/* Store result */
cmd->data = (0xff & eframe[VPM_CMD_BYTE(25, 1)]) << 8;
cmd->data |= eframe[VPM_CMD_BYTE(25, 2)];
if (cmd->desc & __VPM150M_WR) {
kfree(cmd);
} else {
cmd->desc |= __VPM150M_FIN;
complete(&cmd->complete);
}
}
/**
* Call with the reglock held and local interrupts disabled
*/
static void _cmd_decipher(struct wctdm *wc, const u8 *eframe, int card)
{
enum { TDM_BYTES = 24, };
struct wctdm_module *const mod = &wc->mods[card];
struct wctdm_cmd *cmd;
u8 address;
u8 value;
if (list_empty(&mod->active_cmds))
return;
cmd = list_entry(mod->active_cmds.next, struct wctdm_cmd, node);
if (cmd->ident != wc->rxident)
return;
list_del(&cmd->node);
if (cmd->cmd & __CMD_WR) {
kfree(cmd);
return;
}
address = (cmd->cmd >> 8) & 0xff;
cmd->cmd = eframe[TDM_BYTES + CMD_BYTE(mod, 2)];
value = (cmd->cmd & 0xff);
if (cmd->complete) {
complete(cmd->complete);
return;
}
list_add(&cmd->node, &wc->free_isr_commands);
switch (mod->type) {
case FXS:
if (68 == address)
mod->mod.fxs.hook_state_shadow = value;
else
mod->mod.fxs.linefeed_control_shadow = value;
break;
case FXO:
if (5 == address)
mod->mod.fxo.hook_ring_shadow = value;
else
mod->mod.fxo.line_voltage_status = value;
break;
case QRV:
/* wctdm_isr_getreg(wc, mod, 3); */ /* COR/CTCSS state */
/* TODO: This looks broken to me, but I have no way to
* resolved it. */
/* wc->mods[card & 0xfc].cmds[USER_COMMANDS + 1] = CMD_RD(3); */
break;
default:
break;
}
}
/* Call with wc.reglock held and local interrupts disabled. */
static void
wctdm_isr_getreg(struct wctdm *wc, struct wctdm_module *const mod, u8 address)
{
struct wctdm_cmd *cmd;
if (!list_empty(&wc->free_isr_commands)) {
cmd = list_entry(wc->free_isr_commands.next,
struct wctdm_cmd, node);
list_del(&cmd->node);
} else {
cmd = kmalloc(sizeof(*cmd), GFP_ATOMIC);
if (unlikely(!cmd))
return;
}
cmd->cmd = CMD_RD(address);
cmd->complete = NULL;
list_add(&cmd->node, &mod->pending_cmds);
}
static inline void
wctdm_setreg_intr(struct wctdm *wc, struct wctdm_module *mod,
int addr, int val);
static void cmd_checkisr(struct wctdm *wc, struct wctdm_module *const mod)
{
if (mod->sethook) {
wctdm_setreg_intr(wc, mod, ((mod->sethook >> 8) & 0xff),
mod->sethook & 0xff);
mod->sethook = 0;
return;
}
switch (mod->type) {
case FXS:
wctdm_isr_getreg(wc, mod, 68); /* Hook state */
#ifdef PAQ_DEBUG
wctdm_isr_getreg(wc, mod, 19); /* Transistor interrupts */
#else
wctdm_isr_getreg(wc, mod, LINE_STATE);
#endif
break;
case FXO:
wctdm_isr_getreg(wc, mod, 5); /* Hook/Ring state */
wctdm_isr_getreg(wc, mod, 29); /* Battery */
break;
case QRV:
wctdm_isr_getreg(wc, mod, 3); /* COR/CTCSS state */
/* TODO: This looks broken to me, but I have no way to
* resolved it. */
/* wc->mods[card & 0xfc].cmds[USER_COMMANDS + 1] = CMD_RD(3); */
break;
case BRI:
/* TODO: Two calls needed here? */
wctdm_bri_checkisr(wc, mod, 0);
wctdm_bri_checkisr(wc, mod, 1);
break;
default:
break;
}
}
/**
* insert_tdm_data() - Move TDM data from channels to sframe.
*
*/
static void insert_tdm_data(const struct wctdm *wc, u8 *sframe)
{
int i;
register u8 *chanchunk;
for (i = 0; i < wc->avchannels; i += 4) {
chanchunk = &wc->chans[0 + i]->chan.writechunk[0];
sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0];
sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1];
sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2];
sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3];
sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4];
sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5];
sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6];
sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7];
chanchunk = &wc->chans[1 + i]->chan.writechunk[0];
sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0];
sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1];
sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2];
sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3];
sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4];
sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5];
sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6];
sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7];
chanchunk = &wc->chans[2 + i]->chan.writechunk[0];
sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0];
sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1];
sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2];
sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3];
sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4];
sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5];
sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6];
sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7];
chanchunk = &wc->chans[3 + i]->chan.writechunk[0];
sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0];
sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1];
sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2];
sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3];
sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4];
sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5];
sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6];
sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7];
}
}
static inline void wctdm_transmitprep(struct wctdm *wc, unsigned char *sframe)
{
int x, y;
struct dahdi_span *s;
unsigned char *eframe = sframe;
/* Calculate Transmission */
if (likely(is_initialized(wc))) {
for (x = 0; x < MAX_SPANS; x++) {
if (wc->spans[x]) {
s = &wc->spans[x]->span;
_dahdi_transmit(s);
}
}
insert_tdm_data(wc, sframe);
#ifdef CONFIG_VOICEBUS_ECREFERENCE
for (x = 0; x < wc->avchannels; ++x) {
__dahdi_fifo_put(wc->ec_reference[x],
wc->chans[x]->chan.writechunk,
DAHDI_CHUNKSIZE);
}
#endif
}
spin_lock(&wc->reglock);
for (x = 0; x < DAHDI_CHUNKSIZE; x++) {
/* Send a sample, as a 32-bit word */
/* TODO: ABK: hmm, this was originally mods_per_board, but we
* need to worry about all the active "voice" timeslots, since
* BRI modules have a different number of TDM channels than
* installed modules. */
for (y = 0; y < wc->avchannels; y++) {
if (y < wc->mods_per_board)
_cmd_dequeue(wc, eframe, y, x);
}
if (wc->vpmadt032)
cmd_dequeue_vpmadt032(wc, eframe);
else if (wc->vpmoct)
cmd_dequeue_vpmoct(wc, eframe);
if (x < DAHDI_CHUNKSIZE - 1) {
eframe[EFRAME_SIZE] = wc->ctlreg;
eframe[EFRAME_SIZE + 1] = wc->txident++;
if (4 == wc->desc->ports)
eframe[EFRAME_SIZE + 2] = wc->tdm410leds;
}
eframe += (EFRAME_SIZE + EFRAME_GAP);
}
spin_unlock(&wc->reglock);
}
/* Must be called with wc.reglock held and local interrupts disabled */
static inline void
wctdm_setreg_intr(struct wctdm *wc, struct wctdm_module *mod, int addr, int val)
{
struct wctdm_cmd *cmd;
cmd = kmalloc(sizeof(*cmd), GFP_ATOMIC);
if (unlikely(!cmd))
return;
cmd->complete = NULL;
cmd->cmd = CMD_WR(addr, val);
list_add_tail(&cmd->node, &mod->pending_cmds);
}
int wctdm_setreg(struct wctdm *wc, struct wctdm_module *mod, int addr, int val)
{
struct wctdm_cmd *cmd;
unsigned long flags;
#if 0 /* TODO */
/* QRV and BRI cards are only addressed at their first "port" */
if ((card & 0x03) && ((wc->mods[card].type == QRV) ||
(wc->mods[card].type == BRI)))
return 0;
#endif
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (unlikely(!cmd))
return -ENOMEM;
cmd->complete = NULL;
cmd->cmd = CMD_WR(addr, val);
spin_lock_irqsave(&wc->reglock, flags);
list_add_tail(&cmd->node, &mod->pending_cmds);
spin_unlock_irqrestore(&wc->reglock, flags);
return 0;
}
int wctdm_getreg(struct wctdm *wc, struct wctdm_module *const mod, int addr)
{
unsigned long flags;
struct wctdm_cmd *cmd;
int val;
#if 0 /* TODO */
/* if a QRV card, use only its first channel */
if (wc->mods[card].type == QRV) {
if (card & 3)
return 0;
}
#endif
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
cmd->complete = kmalloc(sizeof(*cmd->complete), GFP_KERNEL);
if (!cmd->complete) {
kfree(cmd);
return -ENOMEM;
}
init_completion(cmd->complete);
cmd->cmd = CMD_RD(addr);
spin_lock_irqsave(&wc->reglock, flags);
list_add_tail(&cmd->node, &mod->pending_cmds);
spin_unlock_irqrestore(&wc->reglock, flags);
wait_for_completion(cmd->complete);
val = cmd->cmd & 0xff;
kfree(cmd->complete);
kfree(cmd);
return val;
}
static int wctdm_getregs(struct wctdm *wc, struct wctdm_module *const mod,
int *const addresses, const size_t count)
{
int x;
unsigned long flags;
struct wctdm_cmd *cmd;
struct wctdm_cmd **cmds = kmalloc(sizeof(cmd) * count, GFP_KERNEL);
if (!cmds)
return -ENOMEM;
for (x = 0; x < count; ++x) {
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd) {
kfree(cmds);
return -ENOMEM;
}
cmd->complete = kmalloc(sizeof(*cmd->complete), GFP_KERNEL);
if (!cmd->complete) {
kfree(cmd);
kfree(cmds);
return -ENOMEM;
}
init_completion(cmd->complete);
cmd->cmd = CMD_RD(addresses[x]);
spin_lock_irqsave(&wc->reglock, flags);
list_add_tail(&cmd->node, &mod->pending_cmds);
spin_unlock_irqrestore(&wc->reglock, flags);
cmds[x] = cmd;
}
for (x = count - 1; x >= 0; --x) {
cmd = cmds[x];
wait_for_completion(cmd->complete);
addresses[x] = cmd->cmd & 0xff;
kfree(cmd->complete);
kfree(cmd);
}
kfree(cmds);
return 0;
}
/**
* call with wc->reglock held and interrupts disabled.
*/
static void cmd_retransmit(struct wctdm *wc)
{
int x;
for (x = 0; x < wc->mods_per_board; x++) {
struct wctdm_module *const mod = &wc->mods[x];
if (mod->type == BRI)
continue;
list_splice_init(&mod->active_cmds, &mod->pending_cmds);
}
#ifdef VPM_SUPPORT
if (wc->vpmadt032)
vpmadt032_resend(wc->vpmadt032);
#endif
}
/**
* extract_tdm_data() - Move TDM data from sframe to channels.
*
*/
static void extract_tdm_data(struct wctdm *wc, const u8 *sframe)
{
int i;
register u8 *chanchunk;
for (i = 0; i < wc->avchannels; i += 4) {
chanchunk = &wc->chans[0 + i]->chan.readchunk[0];
chanchunk[0] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*0];
chanchunk[1] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*1];
chanchunk[2] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*2];
chanchunk[3] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*3];
chanchunk[4] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*4];
chanchunk[5] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*5];
chanchunk[6] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*6];
chanchunk[7] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*7];
chanchunk = &wc->chans[1 + i]->chan.readchunk[0];
chanchunk[0] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*0];
chanchunk[1] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*1];
chanchunk[2] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*2];
chanchunk[3] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*3];
chanchunk[4] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*4];
chanchunk[5] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*5];
chanchunk[6] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*6];
chanchunk[7] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*7];
chanchunk = &wc->chans[2 + i]->chan.readchunk[0];
chanchunk[0] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*0];
chanchunk[1] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*1];
chanchunk[2] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*2];
chanchunk[3] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*3];
chanchunk[4] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*4];
chanchunk[5] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*5];
chanchunk[6] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*6];
chanchunk[7] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*7];
chanchunk = &wc->chans[3 + i]->chan.readchunk[0];
chanchunk[0] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*0];
chanchunk[1] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*1];
chanchunk[2] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*2];
chanchunk[3] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*3];
chanchunk[4] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*4];
chanchunk[5] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*5];
chanchunk[6] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*6];
chanchunk[7] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*7];
}
/* Pre-echo with the vpmoct overwrites the 24th timeslot with the
* specified channel's pre-echo audio stream. This data is ignored
* on all but the 24xx card, so we store it in a temporary buffer.
*/
if (wc->vpmoct && wc->vpmoct->preecho_enabled) {
chanchunk = &wc->vpmoct->preecho_buf[0];
chanchunk[0] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*0];
chanchunk[1] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*1];
chanchunk[2] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*2];
chanchunk[3] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*3];
chanchunk[4] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*4];
chanchunk[5] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*5];
chanchunk[6] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*6];
chanchunk[7] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*7];
}
}
static inline void wctdm_receiveprep(struct wctdm *wc, const u8 *sframe)
{
int x, y;
bool irqmiss = false;
unsigned char expected;
const u8 *eframe = sframe;
if (unlikely(!is_good_frame(sframe)))
return;
spin_lock(&wc->reglock);
if (likely(is_initialized(wc)))
extract_tdm_data(wc, sframe);
for (x = 0; x < DAHDI_CHUNKSIZE; x++) {
if (x < DAHDI_CHUNKSIZE - 1) {
expected = wc->rxident + 1;
wc->rxident = eframe[EFRAME_SIZE + 1];
if (wc->rxident != expected) {
irqmiss = true;
cmd_retransmit(wc);
}
}
for (y = 0; y < wc->avchannels; y++)
_cmd_decipher(wc, eframe, y);
if (wc->vpmadt032)
cmd_decipher_vpmadt032(wc, eframe);
else if (wc->vpmoct)
cmd_decipher_vpmoct(wc, eframe);
eframe += (EFRAME_SIZE + EFRAME_GAP);
}
spin_unlock(&wc->reglock);
/* XXX We're wasting 8 taps. We should get closer :( */
if (likely(is_initialized(wc))) {
for (x = 0; x < wc->avchannels; x++) {
struct wctdm_chan *const wchan = wc->chans[x];
struct dahdi_chan *const c = &wchan->chan;
#ifdef CONFIG_VOICEBUS_ECREFERENCE
unsigned char buffer[DAHDI_CHUNKSIZE];
__dahdi_fifo_get(wc->ec_reference[x], buffer,
ARRAY_SIZE(buffer));
_dahdi_ec_chunk(c, c->readchunk, buffer);
#else
if ((wc->vpmoct) &&
(wchan->timeslot == wc->vpmoct->preecho_timeslot) &&
(wc->vpmoct->preecho_enabled)) {
__dahdi_ec_chunk(c, c->readchunk,
wc->vpmoct->preecho_buf,
c->writechunk);
} else {
__dahdi_ec_chunk(c, c->readchunk, c->readchunk,
c->writechunk);
}
#endif
}
for (x = 0; x < MAX_SPANS; x++) {
if (wc->spans[x]) {
struct dahdi_span *s = &wc->spans[x]->span;
#if 1
/* Check for digital spans */
if (s->ops->chanconfig == b400m_chanconfig) {
BUG_ON(!is_hx8(wc));
if (s->flags & DAHDI_FLAG_RUNNING)
b400m_dchan(s);
}
#endif
_dahdi_receive(s);
if (unlikely(irqmiss))
wc->ddev->irqmisses++;
}
}
}
}
static int wait_access(struct wctdm *wc, struct wctdm_module *const mod)
{
unsigned char data = 0;
int count = 0;
#define MAX 10 /* attempts */
/* Wait for indirect access */
while (count++ < MAX) {
data = wctdm_getreg(wc, mod, I_STATUS);
if (!data)
return 0;
}
if (count > (MAX-1)) {
dev_notice(&wc->vb.pdev->dev,
" ##### Loop error (%02x) #####\n", data);
}
return 0;
}
static unsigned char translate_3215(unsigned char address)
{
int x;
for (x = 0; x < ARRAY_SIZE(indirect_regs); x++) {
if (indirect_regs[x].address == address) {
address = indirect_regs[x].altaddr;
break;
}
}
return address;
}
static int
wctdm_proslic_setreg_indirect(struct wctdm *wc, struct wctdm_module *const mod,
unsigned char address, unsigned short data)
{
int res = -1;
address = translate_3215(address);
if (address == 255)
return 0;
if (!wait_access(wc, mod)) {
wctdm_setreg(wc, mod, IDA_LO, (u8)(data & 0xFF));
wctdm_setreg(wc, mod, IDA_HI, (u8)((data & 0xFF00)>>8));
wctdm_setreg(wc, mod, IAA, address);
res = 0;
};
return res;
}
static int
wctdm_proslic_getreg_indirect(struct wctdm *wc, struct wctdm_module *const mod,
unsigned char address)
{
int res = -1;
char *p=NULL;
address = translate_3215(address);
if (address == 255)
return 0;
if (!wait_access(wc, mod)) {
wctdm_setreg(wc, mod, IAA, address);
if (!wait_access(wc, mod)) {
int addresses[2] = {IDA_LO, IDA_HI};
wctdm_getregs(wc, mod, addresses,
ARRAY_SIZE(addresses));
res = addresses[0] | (addresses[1] << 8);
} else
p = "Failed to wait inside\n";
} else
p = "failed to wait\n";
if (p)
dev_notice(&wc->vb.pdev->dev, "%s", p);
return res;
}
static int
wctdm_proslic_init_indirect_regs(struct wctdm *wc, struct wctdm_module *mod)
{
unsigned char i;
for (i = 0; i < ARRAY_SIZE(indirect_regs); i++) {
if (wctdm_proslic_setreg_indirect(wc, mod,
indirect_regs[i].address,
indirect_regs[i].initial))
return -1;
}
return 0;
}
static int
wctdm_proslic_verify_indirect_regs(struct wctdm *wc, struct wctdm_module *mod)
{
int passed = 1;
unsigned short i, initial;
int j;
for (i = 0; i < ARRAY_SIZE(indirect_regs); i++) {
j = wctdm_proslic_getreg_indirect(wc, mod,
(u8)indirect_regs[i].address);
if (j < 0) {
dev_notice(&wc->vb.pdev->dev, "Failed to read indirect register %d\n", i);
return -1;
}
initial = indirect_regs[i].initial;
if ((j != initial) && (indirect_regs[i].altaddr != 255)) {
dev_notice(&wc->vb.pdev->dev,
"!!!!!!! %s iREG %X = %X should be %X\n",
indirect_regs[i].name,
indirect_regs[i].address, j, initial);
passed = 0;
}
}
if (passed) {
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Init Indirect Registers completed successfully.\n");
}
} else {
dev_notice(&wc->vb.pdev->dev,
" !!!!! Init Indirect Registers UNSUCCESSFULLY.\n");
return -1;
}
return 0;
}
/**
* wctdm_proslic_check_oppending -
*
* Ensures that a write to the line feed register on the SLIC has been
* processed. If it hasn't after the timeout value, then it will resend the
* command and wait for another timeout period.
*
*/
static void
wctdm_proslic_check_oppending(struct wctdm *wc, struct wctdm_module *const mod)
{
struct fxs *const fxs = &mod->mod.fxs;
if (!(fxs->lasttxhook & SLIC_LF_OPPENDING))
return;
/* Monitor the Pending LF state change, for the next 100ms */
spin_lock(&wc->reglock);
if (!(fxs->lasttxhook & SLIC_LF_OPPENDING)) {
spin_unlock(&wc->reglock);
return;
}
if ((fxs->linefeed_control_shadow & SLIC_LF_SETMASK) ==
(fxs->lasttxhook & SLIC_LF_SETMASK)) {
fxs->lasttxhook &= SLIC_LF_SETMASK;
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"SLIC_LF OK: card=%d shadow=%02x "
"lasttxhook=%02x framecount=%ld\n", mod->card,
fxs->linefeed_control_shadow,
fxs->lasttxhook, wc->framecount);
}
} else if (time_after(wc->framecount, fxs->oppending_timeout)) {
/* Check again in 100 ms */
fxs->oppending_timeout = wc->framecount + 100;
wctdm_setreg_intr(wc, mod, LINE_STATE, fxs->lasttxhook);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"SLIC_LF RETRY: card=%d shadow=%02x "
"lasttxhook=%02x framecount=%ld\n", mod->card,
fxs->linefeed_control_shadow,
fxs->lasttxhook, wc->framecount);
}
}
spin_unlock(&wc->reglock);
}
/* 256ms interrupt */
static void
wctdm_proslic_recheck_sanity(struct wctdm *wc, struct wctdm_module *const mod)
{
struct fxs *const fxs = &mod->mod.fxs;
int res;
#ifdef PAQ_DEBUG
res = mod->isrshadow[1];
res &= ~0x3;
if (res) {
mod->isrshadow[1] = 0;
fxs->palarms++;
if (fxs->palarms < MAX_ALARMS) {
dev_notice(&wc->vb.pdev->dev, "Power alarm (%02x) on module %d, resetting!\n", res, card + 1);
mod->sethook = CMD_WR(19, res);
/* Update shadow register to avoid extra power alarms until next read */
mod->isrshadow[1] = 0;
} else {
if (fxs->palarms == MAX_ALARMS)
dev_notice(&wc->vb.pdev->dev, "Too many power alarms on card %d, NOT resetting!\n", card + 1);
}
}
#else
spin_lock(&wc->reglock);
/* reg 64 has to be zero at last isr read */
res = !fxs->linefeed_control_shadow &&
!(fxs->lasttxhook & SLIC_LF_OPPENDING) && /* not a transition */
fxs->lasttxhook; /* not an intended zero */
if (res) {
fxs->palarms++;
if (fxs->palarms < MAX_ALARMS) {
dev_notice(&wc->vb.pdev->dev,
"Power alarm on module %d, resetting!\n",
mod->card + 1);
if (fxs->lasttxhook == SLIC_LF_RINGING) {
fxs->lasttxhook = POLARITY_XOR(fxs) ?
SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;;
}
fxs->lasttxhook |= SLIC_LF_OPPENDING;
mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook);
fxs->oppending_timeout = wc->framecount + 100;
/* Update shadow register to avoid extra power alarms
* until next read */
fxs->linefeed_control_shadow = fxs->lasttxhook;
} else {
if (fxs->palarms == MAX_ALARMS) {
dev_notice(&wc->vb.pdev->dev,
"Too many power alarms on card %d, "
"NOT resetting!\n", mod->card + 1);
}
}
}
spin_unlock(&wc->reglock);
#endif
}
static void wctdm_qrvdri_check_hook(struct wctdm *wc, int card)
{
signed char b,b1;
int qrvcard = card & 0xfc;
if (wc->mods[card].mod.qrv.debtime >= 2)
wc->mods[card].mod.qrv.debtime--;
b = wc->mods[qrvcard].mod.qrv.isrshadow[0]; /* Hook/Ring state */
b &= 0xcc; /* use bits 3-4 and 6-7 only */
if (wc->mods[qrvcard].mod.qrv.radmode & RADMODE_IGNORECOR)
b &= ~4;
else if (!(wc->mods[qrvcard].mod.qrv.radmode & RADMODE_INVERTCOR))
b ^= 4;
if (wc->mods[qrvcard + 1].mod.qrv.radmode | RADMODE_IGNORECOR)
b &= ~0x40;
else if (!(wc->mods[qrvcard + 1].mod.qrv.radmode | RADMODE_INVERTCOR))
b ^= 0x40;
if ((wc->mods[qrvcard].mod.qrv.radmode & RADMODE_IGNORECT) ||
(!(wc->mods[qrvcard].mod.qrv.radmode & RADMODE_EXTTONE)))
b &= ~8;
else if (!(wc->mods[qrvcard].mod.qrv.radmode & RADMODE_EXTINVERT))
b ^= 8;
if ((wc->mods[qrvcard + 1].mod.qrv.radmode & RADMODE_IGNORECT) ||
(!(wc->mods[qrvcard + 1].mod.qrv.radmode & RADMODE_EXTTONE)))
b &= ~0x80;
else if (!(wc->mods[qrvcard + 1].mod.qrv.radmode & RADMODE_EXTINVERT))
b ^= 0x80;
/* now b & MASK should be zero, if its active */
/* check for change in chan 0 */
if ((!(b & 0xc)) != wc->mods[qrvcard + 2].mod.qrv.hook)
{
wc->mods[qrvcard].mod.qrv.debtime = wc->mods[qrvcard].mod.qrv.debouncetime;
wc->mods[qrvcard + 2].mod.qrv.hook = !(b & 0xc);
}
/* if timed-out and ready */
if (wc->mods[qrvcard].mod.qrv.debtime == 1) {
b1 = wc->mods[qrvcard + 2].mod.qrv.hook;
if (debug) {
dev_info(&wc->vb.pdev->dev,
"QRV channel %d rx state changed to %d\n",
qrvcard, wc->mods[qrvcard + 2].mod.qrv.hook);
}
dahdi_hooksig(wc->aspan->span.chans[qrvcard],
(b1) ? DAHDI_RXSIG_OFFHOOK : DAHDI_RXSIG_ONHOOK);
wc->mods[card].mod.qrv.debtime = 0;
}
/* check for change in chan 1 */
if ((!(b & 0xc0)) != wc->mods[qrvcard + 3].mod.qrv.hook)
{
wc->mods[qrvcard + 1].mod.qrv.debtime = QRV_DEBOUNCETIME;
wc->mods[qrvcard + 3].mod.qrv.hook = !(b & 0xc0);
}
if (wc->mods[qrvcard + 1].mod.qrv.debtime == 1) {
b1 = wc->mods[qrvcard + 3].mod.qrv.hook;
if (debug) {
dev_info(&wc->vb.pdev->dev,
"QRV channel %d rx state changed to %d\n",
qrvcard + 1, wc->mods[qrvcard + 3].mod.qrv.hook);
}
dahdi_hooksig(wc->aspan->span.chans[qrvcard + 1],
(b1) ? DAHDI_RXSIG_OFFHOOK : DAHDI_RXSIG_ONHOOK);
wc->mods[card].mod.qrv.debtime = 0;
}
return;
}
static inline bool is_fxo_ringing(const struct fxo *const fxo)
{
return ((fxo->hook_ring_shadow & 0x60) &&
(fxo->battery_state == BATTERY_PRESENT));
}
static inline bool is_fxo_ringing_positive(const struct fxo *const fxo)
{
return (((fxo->hook_ring_shadow & 0x60) == 0x20) &&
(fxo->battery_state == BATTERY_PRESENT));
}
static inline bool is_fxo_ringing_negative(const struct fxo *const fxo)
{
return (((fxo->hook_ring_shadow & 0x60) == 0x40) &&
(fxo->battery_state == BATTERY_PRESENT));
}
static inline void set_ring(struct fxo *fxo, enum ring_detector_state new)
{
fxo->ring_state = new;
}
static void wctdm_fxo_ring_detect(struct wctdm *wc, struct wctdm_module *mod)
{
struct fxo *const fxo = &mod->mod.fxo;
/* Look for ring status bits (Ring Detect Signal Negative and Ring
* Detect Signal Positive) to transition back and forth some number of
* times to indicate that a ring is occurring. Provide some number of
* samples to allow for the transitions to occur before giving up.
* NOTE: neon mwi voltages will trigger one of these bits to go active
* but not to have transitions between the two bits (i.e. no negative
* to positive or positive to negative traversals) */
switch (fxo->ring_state) {
case DEBOUNCING_RINGING_POSITIVE:
if (is_fxo_ringing_negative(fxo)) {
if (++fxo->ring_polarity_change_count > 4) {
mod_hooksig(wc, mod, DAHDI_RXSIG_RING);
set_ring(fxo, RINGING);
if (debug) {
dev_info(&wc->vb.pdev->dev,
"RING on %s!\n",
get_dahdi_chan(wc, mod)->name);
}
} else {
set_ring(fxo, DEBOUNCING_RINGING_NEGATIVE);
}
} else if (time_after(wc->framecount,
fxo->ringdebounce_timer)) {
set_ring(fxo, RINGOFF);
}
break;
case DEBOUNCING_RINGING_NEGATIVE:
if (is_fxo_ringing_positive(fxo)) {
if (++fxo->ring_polarity_change_count > 4) {
mod_hooksig(wc, mod, DAHDI_RXSIG_RING);
set_ring(fxo, RINGING);
if (debug) {
dev_info(&wc->vb.pdev->dev,
"RING on %s!\n",
get_dahdi_chan(wc, mod)->name);
}
} else {
set_ring(fxo, DEBOUNCING_RINGING_POSITIVE);
}
} else if (time_after(wc->framecount,
fxo->ringdebounce_timer)) {
set_ring(fxo, RINGOFF);
}
break;
case RINGING:
if (!is_fxo_ringing(fxo)) {
set_ring(fxo, DEBOUNCING_RINGOFF);
fxo->ringdebounce_timer =
wc->framecount + ringdebounce / 8;
}
break;
case DEBOUNCING_RINGOFF:
if (!is_fxo_ringing(fxo)) {
if (time_after(wc->framecount,
fxo->ringdebounce_timer)) {
if (debug) {
dev_info(&wc->vb.pdev->dev,
"NO RING on %s!\n",
get_dahdi_chan(wc, mod)->name);
}
mod_hooksig(wc, mod, DAHDI_RXSIG_OFFHOOK);
set_ring(fxo, RINGOFF);
}
} else {
set_ring(fxo, RINGING);
}
break;
case RINGOFF:
if (is_fxo_ringing(fxo)) {
/* Look for positive/negative crossings in ring status
* reg */
if (is_fxo_ringing_positive(fxo))
set_ring(fxo, DEBOUNCING_RINGING_POSITIVE);
else
set_ring(fxo, DEBOUNCING_RINGING_NEGATIVE);
fxo->ringdebounce_timer =
wc->framecount + ringdebounce / 8;
fxo->ring_polarity_change_count = 0;
}
break;
}
}
#define MS_PER_CHECK_HOOK 1
static void
wctdm_check_battery_lost(struct wctdm *wc, struct wctdm_module *const mod)
{
struct fxo *const fxo = &mod->mod.fxo;
/* possible existing states:
battery lost, no debounce timer
battery lost, debounce timer (going to battery present)
battery present or unknown, no debounce timer
battery present or unknown, debounce timer (going to battery lost)
*/
switch (fxo->battery_state) {
case BATTERY_DEBOUNCING_PRESENT:
/* we were going to BATTERY_PRESENT, but
* battery was lost again. */
fxo->battery_state = BATTERY_LOST;
break;
case BATTERY_UNKNOWN:
mod_hooksig(wc, mod, DAHDI_RXSIG_ONHOOK);
case BATTERY_DEBOUNCING_PRESENT_ALARM: /* intentional drop through */
case BATTERY_PRESENT:
fxo->battery_state = BATTERY_DEBOUNCING_LOST;
fxo->battdebounce_timer = wc->framecount + battdebounce;
break;
case BATTERY_DEBOUNCING_LOST:
if (time_after(wc->framecount, fxo->battdebounce_timer)) {
if (debug) {
dev_info(&wc->vb.pdev->dev,
"NO BATTERY on %d/%d!\n",
wc->aspan->span.spanno,
mod->card + 1);
}
#ifdef JAPAN
if (!wc->ohdebounce && wc->offhook) {
dahdi_hooksig(wc->aspan->chans[card],
DAHDI_RXSIG_ONHOOK);
if (debug) {
dev_info(&wc->vb.pdev->dev,
"Signalled On Hook\n");
}
#ifdef ZERO_BATT_RING
wc->onhook++;
#endif
}
#else
mod_hooksig(wc, mod, DAHDI_RXSIG_ONHOOK);
#endif
/* set the alarm timer, taking into account that part
* of its time period has already passed while
* debouncing occurred */
fxo->battery_state = BATTERY_DEBOUNCING_LOST_ALARM;
fxo->battdebounce_timer = wc->framecount +
battalarm - battdebounce;
}
break;
case BATTERY_DEBOUNCING_LOST_ALARM:
if (time_after(wc->framecount, fxo->battdebounce_timer)) {
fxo->battery_state = BATTERY_LOST;
dahdi_alarm_channel(get_dahdi_chan(wc, mod),
DAHDI_ALARM_RED);
}
break;
case BATTERY_LOST:
break;
}
}
static void
wctdm_check_battery_present(struct wctdm *wc, struct wctdm_module *const mod)
{
struct fxo *const fxo = &mod->mod.fxo;
switch (fxo->battery_state) {
case BATTERY_DEBOUNCING_PRESENT:
if (time_after(jiffies, fxo->battdebounce_timer)) {
if (debug) {
dev_info(&wc->vb.pdev->dev,
"BATTERY on %d/%d (%s)!\n",
wc->aspan->span.spanno, mod->card + 1,
(fxo->line_voltage_status < 0) ?
"-" : "+");
}
#ifdef ZERO_BATT_RING
if (wc->onhook) {
wc->onhook = 0;
dahdi_hooksig(wc->aspan->chans[card],
DAHDI_RXSIG_OFFHOOK);
if (debug) {
dev_info(&wc->vb.pdev->dev,
"Signalled Off Hook\n");
}
}
#else
mod_hooksig(wc, mod, DAHDI_RXSIG_OFFHOOK);
#endif
/* set the alarm timer, taking into account that part
* of its time period has already passed while
* debouncing occurred */
fxo->battery_state = BATTERY_DEBOUNCING_PRESENT_ALARM;
fxo->battdebounce_timer = jiffies +
msecs_to_jiffies(battalarm - battdebounce);
}
break;
case BATTERY_DEBOUNCING_PRESENT_ALARM:
if (time_after(jiffies, fxo->battdebounce_timer)) {
fxo->battery_state = BATTERY_PRESENT;
dahdi_alarm_channel(get_dahdi_chan(wc, mod),
DAHDI_ALARM_NONE);
}
break;
case BATTERY_PRESENT:
break;
case BATTERY_DEBOUNCING_LOST:
/* we were going to BATTERY_LOST, but battery appeared again,
* so clear the debounce timer */
fxo->battery_state = BATTERY_PRESENT;
break;
case BATTERY_UNKNOWN:
mod_hooksig(wc, mod, DAHDI_RXSIG_OFFHOOK);
case BATTERY_LOST: /* intentional drop through */
case BATTERY_DEBOUNCING_LOST_ALARM:
fxo->battery_state = BATTERY_DEBOUNCING_PRESENT;
fxo->battdebounce_timer = jiffies +
msecs_to_jiffies(battdebounce);
break;
}
}
static void
wctdm_fxo_stop_debouncing_polarity(struct wctdm *wc,
struct wctdm_module *const mod)
{
struct fxo *const fxo = &mod->mod.fxo;
switch (fxo->polarity_state) {
case UNKNOWN_POLARITY:
break;
case POLARITY_DEBOUNCE_POSITIVE:
fxo->polarity_state = POLARITY_NEGATIVE;
break;
case POLARITY_POSITIVE:
break;
case POLARITY_DEBOUNCE_NEGATIVE:
fxo->polarity_state = POLARITY_POSITIVE;
break;
case POLARITY_NEGATIVE:
break;
};
}
static void
wctdm_fxo_check_polarity(struct wctdm *wc, struct wctdm_module *const mod,
const bool positive_polarity)
{
struct fxo *const fxo = &mod->mod.fxo;
switch (fxo->polarity_state) {
case UNKNOWN_POLARITY:
fxo->polarity_state = (positive_polarity) ? POLARITY_POSITIVE :
POLARITY_NEGATIVE;
break;
case POLARITY_DEBOUNCE_POSITIVE:
if (!positive_polarity) {
fxo->polarity_state = POLARITY_NEGATIVE;
} else if (time_after(wc->framecount, fxo->poldebounce_timer)) {
fxo->polarity_state = POLARITY_POSITIVE;
dahdi_qevent_lock(get_dahdi_chan(wc, mod),
DAHDI_EVENT_POLARITY);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"%s: Polarity NEGATIVE -> POSITIVE\n",
get_dahdi_chan(wc, mod)->name);
}
}
break;
case POLARITY_POSITIVE:
if (!positive_polarity) {
fxo->polarity_state = POLARITY_DEBOUNCE_NEGATIVE;
fxo->poldebounce_timer = wc->framecount +
POLARITY_DEBOUNCE;
}
break;
case POLARITY_DEBOUNCE_NEGATIVE:
if (positive_polarity) {
fxo->polarity_state = POLARITY_POSITIVE;
} else if (time_after(wc->framecount, fxo->poldebounce_timer)) {
dahdi_qevent_lock(get_dahdi_chan(wc, mod),
DAHDI_EVENT_POLARITY);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"%s: Polarity POSITIVE -> NEGATIVE\n",
get_dahdi_chan(wc, mod)->name);
}
fxo->polarity_state = POLARITY_NEGATIVE;
}
break;
case POLARITY_NEGATIVE:
if (positive_polarity) {
fxo->polarity_state = POLARITY_DEBOUNCE_POSITIVE;
fxo->poldebounce_timer = wc->framecount +
POLARITY_DEBOUNCE;
}
break;
};
}
static void
wctdm_voicedaa_check_hook(struct wctdm *wc, struct wctdm_module *const mod)
{
signed char b;
u8 abs_voltage;
struct fxo *const fxo = &mod->mod.fxo;
/* Try to track issues that plague slot one FXO's */
b = fxo->hook_ring_shadow & 0x9b;
if (fxo->offhook) {
if (b != 0x9)
wctdm_setreg_intr(wc, mod, 5, 0x9);
} else {
if (b != 0x8)
wctdm_setreg_intr(wc, mod, 5, 0x8);
wctdm_fxo_ring_detect(wc, mod);
}
abs_voltage = abs(fxo->line_voltage_status);
if (fxovoltage && time_after(wc->framecount, fxo->display_fxovoltage)) {
/* Every 100 ms */
fxo->display_fxovoltage = wc->framecount + 100;
dev_info(&wc->vb.pdev->dev,
"Port %d: Voltage: %d\n",
mod->card + 1, fxo->line_voltage_status);
}
if (unlikely(DAHDI_RXSIG_INITIAL == get_dahdi_chan(wc, mod)->rxhooksig)) {
/*
* dahdi-base will set DAHDI_RXSIG_INITIAL after a
* DAHDI_STARTUP or DAHDI_CHANCONFIG ioctl so that new events
* will be queued on the channel with the current received
* hook state. Channels that use robbed-bit signalling always
* report the current received state via the dahdi_rbsbits
* call. Since we only call dahdi_hooksig when we've detected
* a change to report, let's forget our current state in order
* to force us to report it again via dahdi_hooksig.
*
*/
fxo->battery_state = BATTERY_UNKNOWN;
}
if (abs_voltage < battthresh) {
wctdm_fxo_stop_debouncing_polarity(wc, mod);
wctdm_check_battery_lost(wc, mod);
} else {
wctdm_check_battery_present(wc, mod);
wctdm_fxo_check_polarity(wc, mod,
(fxo->line_voltage_status > 0));
}
/* Look for neon mwi pulse */
if (neonmwi_monitor && !fxo->offhook) {
/* Look for 4 consecutive voltage readings
* where the voltage is over the neon limit but
* does not vary greatly from the last reading
*/
if (fxo->battery_state == BATTERY_PRESENT &&
abs_voltage > neonmwi_level &&
(0 == fxo->neonmwi_last_voltage ||
(fxo->line_voltage_status >= fxo->neonmwi_last_voltage - neonmwi_envelope &&
fxo->line_voltage_status <= fxo->neonmwi_last_voltage + neonmwi_envelope))) {
fxo->neonmwi_last_voltage = fxo->line_voltage_status;
if (NEONMWI_ON_DEBOUNCE == fxo->neonmwi_debounce) {
fxo->neonmwi_offcounter = neonmwi_offlimit_cycles;
if (0 == fxo->neonmwi_state) {
dahdi_qevent_lock(get_dahdi_chan(wc, mod), DAHDI_EVENT_NEONMWI_ACTIVE);
fxo->neonmwi_state = 1;
if (debug)
dev_info(&wc->vb.pdev->dev, "NEON MWI active for card %d\n", mod->card+1);
}
fxo->neonmwi_debounce++; /* terminate the processing */
} else if (NEONMWI_ON_DEBOUNCE > fxo->neonmwi_debounce) {
fxo->neonmwi_debounce++;
} else { /* Insure the count gets reset */
fxo->neonmwi_offcounter = neonmwi_offlimit_cycles;
}
} else {
fxo->neonmwi_debounce = 0;
fxo->neonmwi_last_voltage = 0;
}
/* If no neon mwi pulse for given period of time, indicte no neon mwi state */
if (fxo->neonmwi_state && 0 < fxo->neonmwi_offcounter ) {
fxo->neonmwi_offcounter--;
if (0 == fxo->neonmwi_offcounter) {
dahdi_qevent_lock(get_dahdi_chan(wc, mod), DAHDI_EVENT_NEONMWI_INACTIVE);
fxo->neonmwi_state = 0;
if (debug)
dev_info(&wc->vb.pdev->dev, "NEON MWI cleared for card %d\n", mod->card+1);
}
}
}
#undef MS_PER_CHECK_HOOK
}
static void
wctdm_fxs_hooksig(struct wctdm *wc, struct wctdm_module *const mod,
enum dahdi_txsig txsig)
{
int x = 0;
unsigned long flags;
struct fxs *const fxs = &mod->mod.fxs;
spin_lock_irqsave(&wc->reglock, flags);
switch (txsig) {
case DAHDI_TXSIG_ONHOOK:
switch (get_dahdi_chan(wc, mod)->sig) {
case DAHDI_SIG_FXOGS:
x = (POLARITY_XOR(fxs)) ?
SLIC_LF_RING_OPEN :
SLIC_LF_TIP_OPEN;
break;
case DAHDI_SIG_EM:
case DAHDI_SIG_FXOKS:
case DAHDI_SIG_FXOLS:
default:
x = fxs->idletxhookstate;
break;
}
break;
case DAHDI_TXSIG_OFFHOOK:
switch (get_dahdi_chan(wc, mod)->sig) {
case DAHDI_SIG_EM:
x = (POLARITY_XOR(fxs)) ?
SLIC_LF_ACTIVE_FWD :
SLIC_LF_ACTIVE_REV;
break;
default:
x = fxs->idletxhookstate;
break;
}
break;
case DAHDI_TXSIG_START:
x = SLIC_LF_RINGING;
break;
case DAHDI_TXSIG_KEWL:
x = SLIC_LF_OPEN;
break;
default:
spin_unlock_irqrestore(&wc->reglock, flags);
dev_notice(&wc->vb.pdev->dev,
"wctdm24xxp: Can't set tx state to %d\n", txsig);
return;
}
if (x != fxs->lasttxhook) {
fxs->lasttxhook = x | SLIC_LF_OPPENDING;
mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook);
fxs->oppending_timeout = wc->framecount + 100;
spin_unlock_irqrestore(&wc->reglock, flags);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev, "Setting FXS hook state "
"to %d (%02x) framecount=%ld\n", txsig, x,
wc->framecount);
}
} else {
spin_unlock_irqrestore(&wc->reglock, flags);
}
}
static void wctdm_fxs_off_hook(struct wctdm *wc, struct wctdm_module *const mod)
{
struct fxs *const fxs = &mod->mod.fxs;
if (debug & DEBUG_CARD)
dev_info(&wc->vb.pdev->dev,
"fxs_off_hook: Card %d Going off hook\n", mod->card);
switch (fxs->lasttxhook) {
case SLIC_LF_RINGING: /* Ringing */
case SLIC_LF_OHTRAN_FWD: /* Forward On Hook Transfer */
case SLIC_LF_OHTRAN_REV: /* Reverse On Hook Transfer */
/* just detected OffHook, during Ringing or OnHookTransfer */
fxs->idletxhookstate = POLARITY_XOR(fxs) ?
SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;
break;
}
if ((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)
wctdm_fxs_hooksig(wc, mod, DAHDI_TXSIG_OFFHOOK);
dahdi_hooksig(get_dahdi_chan(wc, mod), DAHDI_RXSIG_OFFHOOK);
#ifdef DEBUG
if (robust)
wctdm_init_proslic(wc, mod, 1, 0, 1);
#endif
}
/**
* wctdm_fxs_on_hook - Report on hook to DAHDI.
* @wc: Board hosting the module.
* @card: Index of the module / port to place on hook.
*
* If we are intentionally dropping battery to signal a forward
* disconnect we do not want to place the line "On-Hook". In this
* case, the core of DAHDI will place us on hook when one of the RBS
* timers expires.
*
*/
static void wctdm_fxs_on_hook(struct wctdm *wc, struct wctdm_module *const mod)
{
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"fxs_on_hook: Card %d Going on hook\n", mod->card);
}
if ((mod->mod.fxs.lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)
wctdm_fxs_hooksig(wc, mod, DAHDI_TXSIG_ONHOOK);
dahdi_hooksig(get_dahdi_chan(wc, mod), DAHDI_RXSIG_ONHOOK);
}
static const char *wctdm_echocan_name(const struct dahdi_chan *chan)
{
struct wctdm *wc = chan->pvt;
if (wc->vpmadt032)
return vpmadt032_name;
else if (wc->vpmoct)
return vpmoct_name;
return NULL;
}
static int wctdm_echocan_create(struct dahdi_chan *chan,
struct dahdi_echocanparams *ecp,
struct dahdi_echocanparam *p,
struct dahdi_echocan_state **ec)
{
struct wctdm *wc = chan->pvt;
struct wctdm_chan *wchan = container_of(chan, struct wctdm_chan, chan);
const struct dahdi_echocan_ops *ops;
const struct dahdi_echocan_features *features;
enum adt_companding comp;
#ifdef VPM_SUPPORT
if (!vpmsupport)
return -ENODEV;
#endif
if (wc->vpmadt032) {
ops = &vpm_ec_ops;
features = &vpm_ec_features;
*ec = &wchan->ec;
(*ec)->ops = ops;
(*ec)->features = *features;
comp = (DAHDI_LAW_ALAW == chan->span->deflaw) ?
ADT_COMP_ALAW : ADT_COMP_ULAW;
return vpmadt032_echocan_create(wc->vpmadt032, wchan->timeslot,
comp, ecp, p);
} else if (wc->vpmoct) {
ops = &vpm_ec_ops;
features = &vpm_ec_features;
*ec = &wchan->ec;
(*ec)->ops = ops;
(*ec)->features = *features;
return vpmoct_echocan_create(wc->vpmoct, wchan->timeslot,
chan->span->deflaw);
} else {
return -ENODEV;
}
}
static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec)
{
struct wctdm *wc = chan->pvt;
struct wctdm_chan *wchan = container_of(chan, struct wctdm_chan, chan);
if (wc->vpmadt032) {
memset(ec, 0, sizeof(*ec));
vpmadt032_echocan_free(wc->vpmadt032, wchan->timeslot, ec);
} else if (wc->vpmoct) {
memset(ec, 0, sizeof(*ec));
vpmoct_echocan_free(wc->vpmoct, wchan->timeslot);
}
}
/* 1ms interrupt */
static void wctdm_isr_misc_fxs(struct wctdm *wc, struct wctdm_module *const mod)
{
struct fxs *const fxs = &mod->mod.fxs;
if (time_after(wc->framecount, fxs->check_alarm)) {
/* Accept an alarm once per 10 seconds */
fxs->check_alarm = wc->framecount + (1000*10);
if (fxs->palarms)
fxs->palarms--;
}
if (fxs->off_hook && !(fxs->hook_state_shadow & 1)) {
wctdm_fxs_on_hook(wc, mod);
fxs->off_hook = 0;
} else if (!fxs->off_hook && (fxs->hook_state_shadow & 1)) {
wctdm_fxs_off_hook(wc, mod);
fxs->off_hook = 1;
}
wctdm_proslic_check_oppending(wc, mod);
if (time_after(wc->framecount, fxs->check_proslic)) {
fxs->check_proslic = wc->framecount + 250; /* every 250ms */
wctdm_proslic_recheck_sanity(wc, mod);
}
if (SLIC_LF_RINGING == fxs->lasttxhook) {
/* RINGing, prepare for OHT */
fxs->ohttimer = wc->framecount + OHT_TIMER;
/* OHT mode when idle */
fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_OHTRAN_REV :
SLIC_LF_OHTRAN_FWD;
} else if (fxs->oht_active) {
/* check if still OnHook */
if (!fxs->off_hook) {
if (time_before(wc->framecount, fxs->ohttimer))
return;
/* Switch to active */
fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;
spin_lock(&wc->reglock);
if (SLIC_LF_OHTRAN_FWD == fxs->lasttxhook) {
/* Apply the change if appropriate */
fxs->lasttxhook = SLIC_LF_OPPENDING | SLIC_LF_ACTIVE_FWD;
/* Data enqueued here */
mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Channel %d OnHookTransfer "
"stop\n", mod->card);
}
} else if (SLIC_LF_OHTRAN_REV == fxs->lasttxhook) {
/* Apply the change if appropriate */
fxs->lasttxhook = SLIC_LF_OPPENDING | SLIC_LF_ACTIVE_REV;
/* Data enqueued here */
mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Channel %d OnHookTransfer "
"stop\n", mod->card);
}
}
spin_unlock(&wc->reglock);
} else {
fxs->oht_active = 0;
/* Switch to active */
fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD;
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Channel %d OnHookTransfer abort\n",
mod->card);
}
}
}
}
/* 1ms interrupt */
static inline void wctdm_isr_misc(struct wctdm *wc)
{
int x;
if (unlikely(!is_initialized(wc)))
return;
for (x = 0; x < wc->mods_per_board; x++) {
struct wctdm_module *const mod = &wc->mods[x];
spin_lock(&wc->reglock);
cmd_checkisr(wc, mod);
spin_unlock(&wc->reglock);
switch (mod->type) {
case FXS:
wctdm_isr_misc_fxs(wc, mod);
break;
case FXO:
wctdm_voicedaa_check_hook(wc, mod);
break;
case QRV:
wctdm_qrvdri_check_hook(wc, x);
break;
default:
break;
}
}
}
static void handle_receive(struct voicebus *vb, struct list_head *buffers)
{
struct wctdm *wc = container_of(vb, struct wctdm, vb);
struct vbb *vbb;
list_for_each_entry(vbb, buffers, entry)
wctdm_receiveprep(wc, vbb->data);
}
static void handle_transmit(struct voicebus *vb, struct list_head *buffers)
{
struct wctdm *wc = container_of(vb, struct wctdm, vb);
struct vbb *vbb;
list_for_each_entry(vbb, buffers, entry) {
memset(vbb->data, 0, sizeof(vbb->data));
wctdm_transmitprep(wc, vbb->data);
wctdm_isr_misc(wc);
wc->framecount++;
}
}
struct sframe_packet {
struct list_head node;
u8 sframe[SFRAME_SIZE];
};
/**
* handle_hx8_bootmode_receive() - queue up the receive packet for later...
*
* This function is called from interrupt context and isn't optimal, but it's
* not the main code path.
*/
static void handle_hx8_bootmode_receive(struct wctdm *wc, const void *vbb)
{
struct sframe_packet *frame;
frame = kzalloc(sizeof(*frame), GFP_ATOMIC);
if (unlikely(!frame)) {
WARN_ON(1);
return;
}
memcpy(frame->sframe, vbb, sizeof(frame->sframe));
spin_lock(&wc->frame_list_lock);
list_add_tail(&frame->node, &wc->frame_list);
spin_unlock(&wc->frame_list_lock);
/* Wake up anyone waiting for a new packet. */
wake_up(&wc->regq);
return;
}
static void handle_hx8_receive(struct voicebus *vb, struct list_head *buffers)
{
struct wctdm *wc = container_of(vb, struct wctdm, vb);
struct vbb *vbb;
list_for_each_entry(vbb, buffers, entry)
handle_hx8_bootmode_receive(wc, vbb->data);
}
static void handle_hx8_transmit(struct voicebus *vb, struct list_head *buffers)
{
struct vbb *vbb, *n;
list_for_each_entry_safe(vbb, n, buffers, entry) {
list_del(&vbb->entry);
dma_pool_free(vb->pool, vbb, vbb->dma_addr);
}
}
static int wctdm_voicedaa_insane(struct wctdm *wc, struct wctdm_module *mod)
{
int blah;
blah = wctdm_getreg(wc, mod, 2);
if (blah != 0x3)
return -2;
blah = wctdm_getreg(wc, mod, 11);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"VoiceDAA System: %02x\n", blah & 0xf);
}
return 0;
}
static int
wctdm_proslic_insane(struct wctdm *wc, struct wctdm_module *const mod)
{
int blah, reg1, insane_report;
insane_report=0;
blah = wctdm_getreg(wc, mod, 0);
if (blah != 0xff && (debug & DEBUG_CARD)) {
dev_info(&wc->vb.pdev->dev,
"ProSLIC on module %d, product %d, "
"version %d\n", mod->card, (blah & 0x30) >> 4,
(blah & 0xf));
}
#if 0
if ((blah & 0x30) >> 4) {
dev_info(&wc->vb.pdev->dev,
"ProSLIC on module %d is not a 3210.\n", mod->card);
return -1;
}
#endif
if (((blah & 0xf) == 0) || ((blah & 0xf) == 0xf)) {
/* SLIC not loaded */
return -1;
}
/* let's be really sure this is an FXS before we continue */
reg1 = wctdm_getreg(wc, mod, 1);
if ((0x80 != (blah & 0xf0)) || (0x88 != reg1)) {
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"DEBUG: not FXS b/c reg0=%x or "
"reg1 != 0x88 (%x).\n", blah, reg1);
}
return -1;
}
blah = wctdm_getreg(wc, mod, 8);
if (blah != 0x2) {
dev_notice(&wc->vb.pdev->dev,
"ProSLIC on module %d insane (1) %d should be 2\n",
mod->card, blah);
return -1;
} else if (insane_report) {
dev_notice(&wc->vb.pdev->dev,
"ProSLIC on module %d Reg 8 Reads %d Expected "
"is 0x2\n", mod->card, blah);
}
blah = wctdm_getreg(wc, mod, 64);
if (blah != 0x0) {
dev_notice(&wc->vb.pdev->dev,
"ProSLIC on module %d insane (2)\n",
mod->card);
return -1;
} else if (insane_report) {
dev_notice(&wc->vb.pdev->dev,
"ProSLIC on module %d Reg 64 Reads %d Expected "
"is 0x0\n", mod->card, blah);
}
blah = wctdm_getreg(wc, mod, 11);
if (blah != 0x33) {
dev_notice(&wc->vb.pdev->dev,
"ProSLIC on module %d insane (3)\n", mod->card);
return -1;
} else if (insane_report) {
dev_notice(&wc->vb.pdev->dev,
"ProSLIC on module %d Reg 11 Reads %d "
"Expected is 0x33\n", mod->card, blah);
}
/* Just be sure it's setup right. */
wctdm_setreg(wc, mod, 30, 0);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"ProSLIC on module %d seems sane.\n", mod->card);
}
return 0;
}
static int
wctdm_proslic_powerleak_test(struct wctdm *wc, struct wctdm_module *const mod)
{
unsigned long start;
unsigned char vbat;
/* Turn off linefeed */
wctdm_setreg(wc, mod, LINE_STATE, 0);
/* Power down */
wctdm_setreg(wc, mod, 14, 0x10);
start = jiffies;
/* TODO: Why is this sleep necessary. Without it, the first read
* comes back with a 0 value. */
msleep(20);
while ((vbat = wctdm_getreg(wc, mod, 82)) > 0x6) {
if (time_after(jiffies, start + HZ/4))
break;
}
if (vbat < 0x06) {
dev_notice(&wc->vb.pdev->dev,
"Excessive leakage detected on module %d: %d "
"volts (%02x) after %d ms\n", mod->card,
376 * vbat / 1000, vbat,
(int)((jiffies - start) * 1000 / HZ));
return -1;
} else if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Post-leakage voltage: %d volts\n", 376 * vbat / 1000);
}
return 0;
}
static int wctdm_powerup_proslic(struct wctdm *wc,
struct wctdm_module *mod, int fast)
{
unsigned char vbat;
unsigned long origjiffies;
int lim;
/* Set period of DC-DC converter to 1/64 khz */
wctdm_setreg(wc, mod, 92, 0xc0 /* was 0xff */);
/* Wait for VBat to powerup */
origjiffies = jiffies;
/* Disable powerdown */
wctdm_setreg(wc, mod, 14, 0);
/* If fast, don't bother checking anymore */
if (fast)
return 0;
while ((vbat = wctdm_getreg(wc, mod, 82)) < 0xc0) {
/* Wait no more than 500ms */
if ((jiffies - origjiffies) > HZ/2) {
break;
}
}
if (vbat < 0xc0) {
dev_notice(&wc->vb.pdev->dev, "ProSLIC on module %d failed to powerup within %d ms (%d mV only)\n\n -- DID YOU REMEMBER TO PLUG IN THE HD POWER CABLE TO THE TDM CARD??\n",
mod->card, (int)(((jiffies - origjiffies) * 1000 / HZ)),
vbat * 375);
return -1;
} else if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"ProSLIC on module %d powered up to -%d volts (%02x) "
"in %d ms\n", mod->card, vbat * 376 / 1000, vbat,
(int)(((jiffies - origjiffies) * 1000 / HZ)));
}
/* Proslic max allowed loop current, reg 71 LOOP_I_LIMIT */
/* If out of range, just set it to the default value */
lim = (loopcurrent - 20) / 3;
if ( loopcurrent > 41 ) {
lim = 0;
if (debug & DEBUG_CARD)
dev_info(&wc->vb.pdev->dev, "Loop current out of range! Setting to default 20mA!\n");
}
else if (debug & DEBUG_CARD)
dev_info(&wc->vb.pdev->dev, "Loop current set to %dmA!\n",(lim*3)+20);
wctdm_setreg(wc, mod, LOOP_I_LIMIT, lim);
/* Engage DC-DC converter */
wctdm_setreg(wc, mod, 93, 0x19 /* was 0x19 */);
return 0;
}
static int
wctdm_proslic_manual_calibrate(struct wctdm *wc, struct wctdm_module *const mod)
{
unsigned long origjiffies;
unsigned char i;
/* Disable all interupts in DR21-23 */
wctdm_setreg(wc, mod, 21, 0);
wctdm_setreg(wc, mod, 22, 0);
wctdm_setreg(wc, mod, 23, 0);
wctdm_setreg(wc, mod, 64, 0);
/* (0x18) Calibrations without the ADC and DAC offset and without
* common mode calibration. */
wctdm_setreg(wc, mod, 97, 0x18);
/* (0x47) Calibrate common mode and differential DAC mode DAC + ILIM */
wctdm_setreg(wc, mod, 96, 0x47);
origjiffies=jiffies;
while (wctdm_getreg(wc, mod, 96) != 0) {
if ((jiffies-origjiffies) > 80)
return -1;
}
//Initialized DR 98 and 99 to get consistant results.
// 98 and 99 are the results registers and the search should have same intial conditions.
/*******************************The following is the manual gain mismatch calibration****************************/
/*******************************This is also available as a function *******************************************/
msleep(10);
wctdm_proslic_setreg_indirect(wc, mod, 88, 0);
wctdm_proslic_setreg_indirect(wc, mod, 89, 0);
wctdm_proslic_setreg_indirect(wc, mod, 90, 0);
wctdm_proslic_setreg_indirect(wc, mod, 91, 0);
wctdm_proslic_setreg_indirect(wc, mod, 92, 0);
wctdm_proslic_setreg_indirect(wc, mod, 93, 0);
/* This is necessary if the calibration occurs other than at reset */
wctdm_setreg(wc, mod, 98, 0x10);
wctdm_setreg(wc, mod, 99, 0x10);
for ( i=0x1f; i>0; i--)
{
wctdm_setreg(wc, mod, 98, i);
msleep(40);
if ((wctdm_getreg(wc, mod, 88)) == 0)
break;
} // for
for ( i=0x1f; i>0; i--)
{
wctdm_setreg(wc, mod, 99, i);
msleep(40);
if ((wctdm_getreg(wc, mod, 89)) == 0)
break;
}//for
/*******************************The preceding is the manual gain mismatch calibration****************************/
/**********************************The following is the longitudinal Balance Cal***********************************/
wctdm_setreg(wc, mod, 64, 1);
msleep(100);
wctdm_setreg(wc, mod, 64, 0);
/* enable interrupt for the balance Cal */
wctdm_setreg(wc, mod, 23, 0x4);
/* this is a singular calibration bit for longitudinal calibration */
wctdm_setreg(wc, mod, 97, 0x1);
wctdm_setreg(wc, mod, 96, 0x40);
wctdm_getreg(wc, mod, 96); /* Read Reg 96 just cause */
wctdm_setreg(wc, mod, 21, 0xFF);
wctdm_setreg(wc, mod, 22, 0xFF);
wctdm_setreg(wc, mod, 23, 0xFF);
/**The preceding is the longitudinal Balance Cal***/
return(0);
}
static int
wctdm_proslic_calibrate(struct wctdm *wc, struct wctdm_module *mod)
{
unsigned long origjiffies;
int x;
/* Perform all calibrations */
wctdm_setreg(wc, mod, 97, 0x1f);
/* Begin, no speedup */
wctdm_setreg(wc, mod, 96, 0x5f);
/* Wait for it to finish */
origjiffies = jiffies;
while (wctdm_getreg(wc, mod, 96)) {
if (time_after(jiffies, (origjiffies + (2*HZ)))) {
dev_notice(&wc->vb.pdev->dev,
"Timeout waiting for calibration of "
"module %d\n", mod->card);
return -1;
}
}
if (debug & DEBUG_CARD) {
/* Print calibration parameters */
dev_info(&wc->vb.pdev->dev,
"Calibration Vector Regs 98 - 107:\n");
for (x=98;x<108;x++) {
dev_info(&wc->vb.pdev->dev,
"%d: %02x\n", x, wctdm_getreg(wc, mod, x));
}
}
return 0;
}
/*********************************************************************
* Set the hwgain on the analog modules
*
* card = the card position for this module (0-23)
* gain = gain in dB x10 (e.g. -3.5dB would be gain=-35)
* tx = (0 for rx; 1 for tx)
*
*******************************************************************/
static int
wctdm_set_hwgain(struct wctdm *wc, struct wctdm_module *mod,
__s32 gain, __u32 tx)
{
if (mod->type != FXO) {
dev_notice(&wc->vb.pdev->dev,
"Cannot adjust gain. Unsupported module type!\n");
return -1;
}
if (tx) {
if (debug) {
dev_info(&wc->vb.pdev->dev,
"setting FXO tx gain for card=%d to %d\n",
mod->card, gain);
}
if (gain >= -150 && gain <= 0) {
wctdm_setreg(wc, mod, 38, 16 + (gain / -10));
wctdm_setreg(wc, mod, 40, 16 + (-gain % 10));
} else if (gain <= 120 && gain > 0) {
wctdm_setreg(wc, mod, 38, gain/10);
wctdm_setreg(wc, mod, 40, (gain%10));
} else {
dev_notice(&wc->vb.pdev->dev,
"FXO tx gain is out of range (%d)\n", gain);
return -1;
}
} else { /* rx */
if (debug) {
dev_info(&wc->vb.pdev->dev,
"setting FXO rx gain for card=%d to %d\n",
mod->card, gain);
}
if (gain >= -150 && gain <= 0) {
wctdm_setreg(wc, mod, 39, 16 + (gain / -10));
wctdm_setreg(wc, mod, 41, 16 + (-gain % 10));
} else if (gain <= 120 && gain > 0) {
wctdm_setreg(wc, mod, 39, gain/10);
wctdm_setreg(wc, mod, 41, (gain%10));
} else {
dev_notice(&wc->vb.pdev->dev,
"FXO rx gain is out of range (%d)\n", gain);
return -1;
}
}
return 0;
}
static int set_lasttxhook_interruptible(struct wctdm *wc, struct fxs *fxs,
unsigned newval, int *psethook)
{
int res = 0;
unsigned long flags;
int timeout = 0;
do {
spin_lock_irqsave(&wc->reglock, flags);
if (SLIC_LF_OPPENDING & fxs->lasttxhook) {
spin_unlock_irqrestore(&wc->reglock, flags);
if (timeout++ > 100)
return -1;
msleep(1);
} else {
fxs->lasttxhook = (newval & SLIC_LF_SETMASK) | SLIC_LF_OPPENDING;
*psethook = CMD_WR(LINE_STATE, fxs->lasttxhook);
spin_unlock_irqrestore(&wc->reglock, flags);
break;
}
} while (1);
return res;
}
/* Must be called from within an interruptible context */
static int set_vmwi(struct wctdm *wc, struct wctdm_module *const mod)
{
int x;
struct fxs *const fxs = &mod->mod.fxs;
/* Presently only supports line reversal MWI */
if ((fxs->vmwi_active_messages) &&
(fxs->vmwisetting.vmwi_type & DAHDI_VMWI_LREV))
fxs->vmwi_linereverse = 1;
else
fxs->vmwi_linereverse = 0;
/* Set line polarity for new VMWI state */
if (POLARITY_XOR(fxs)) {
fxs->idletxhookstate |= SLIC_LF_REVMASK;
/* Do not set while currently ringing or open */
if (((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_RINGING) &&
((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)) {
x = fxs->lasttxhook;
x |= SLIC_LF_REVMASK;
set_lasttxhook_interruptible(wc, fxs, x, &mod->sethook);
}
} else {
fxs->idletxhookstate &= ~SLIC_LF_REVMASK;
/* Do not set while currently ringing or open */
if (((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_RINGING) &&
((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)) {
x = fxs->lasttxhook;
x &= ~SLIC_LF_REVMASK;
set_lasttxhook_interruptible(wc, fxs, x, &mod->sethook);
}
}
if (debug) {
dev_info(&wc->vb.pdev->dev,
"Setting VMWI on channel %d, messages=%d, lrev=%d\n",
mod->card, fxs->vmwi_active_messages,
fxs->vmwi_linereverse);
}
return 0;
}
static void
wctdm_voicedaa_set_ts(struct wctdm *wc, struct wctdm_module *mod, int ts)
{
wctdm_setreg(wc, mod, 34, (ts * 8) & 0xff);
wctdm_setreg(wc, mod, 35, (ts * 8) >> 8);
wctdm_setreg(wc, mod, 36, (ts * 8) & 0xff);
wctdm_setreg(wc, mod, 37, (ts * 8) >> 8);
if (debug) {
dev_info(&wc->vb.pdev->dev,
"voicedaa: card %d new timeslot: %d\n",
mod->card + 1, ts);
}
}
static int
wctdm_init_voicedaa(struct wctdm *wc, struct wctdm_module *mod,
int fast, int manual, int sane)
{
unsigned char reg16=0, reg26=0, reg30=0, reg31=0;
unsigned long flags;
long newjiffies;
#if 0 /* TODO */
if ((wc->mods[card & 0xfc].type == QRV) ||
(wc->mods[card & 0xfc].type == BRI))
return -2;
#endif
spin_lock_irqsave(&wc->reglock, flags);
mod->type = NONE;
spin_unlock_irqrestore(&wc->reglock, flags);
msleep(20);
spin_lock_irqsave(&wc->reglock, flags);
mod->type = FXO;
spin_unlock_irqrestore(&wc->reglock, flags);
msleep(20);
if (!sane && wctdm_voicedaa_insane(wc, mod))
return -2;
/* Software reset */
wctdm_setreg(wc, mod, 1, 0x80);
msleep(100);
/* Set On-hook speed, Ringer impedence, and ringer threshold */
reg16 |= (fxo_modes[_opermode].ohs << 6);
reg16 |= (fxo_modes[_opermode].rz << 1);
reg16 |= (fxo_modes[_opermode].rt);
wctdm_setreg(wc, mod, 16, reg16);
/* Enable ring detector full-wave rectifier mode */
wctdm_setreg(wc, mod, 18, 2);
wctdm_setreg(wc, mod, 24, 0);
/* Set DC Termination:
Tip/Ring voltage adjust, minimum operational current, current limitation */
reg26 |= (fxo_modes[_opermode].dcv << 6);
reg26 |= (fxo_modes[_opermode].mini << 4);
reg26 |= (fxo_modes[_opermode].ilim << 1);
wctdm_setreg(wc, mod, 26, reg26);
/* Set AC Impedence */
reg30 = (fxo_modes[_opermode].acim);
wctdm_setreg(wc, mod, 30, reg30);
/* Misc. DAA parameters */
/* If fast pickup is set, then the off hook counter will be set to 8
* ms, otherwise 128 ms. */
reg31 = (fastpickup) ? 0xe3 : 0xa3;
reg31 |= (fxo_modes[_opermode].ohs2 << 3);
wctdm_setreg(wc, mod, 31, reg31);
wctdm_voicedaa_set_ts(wc, mod, mod->card);
/* Enable ISO-Cap */
wctdm_setreg(wc, mod, 6, 0x00);
/* Turn off the calibration delay when fastpickup is enabled. */
if (fastpickup)
wctdm_setreg(wc, mod, 17, wctdm_getreg(wc, mod, 17) | 0x20);
/* Wait 1000ms for ISO-cap to come up */
newjiffies = jiffies;
newjiffies += 2 * HZ;
while ((jiffies < newjiffies) && !(wctdm_getreg(wc, mod, 11) & 0xf0))
msleep(100);
if (!(wctdm_getreg(wc, mod, 11) & 0xf0)) {
dev_notice(&wc->vb.pdev->dev, "VoiceDAA did not bring up ISO link properly!\n");
return -1;
}
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev, "ISO-Cap is now up, line side: %02x rev %02x\n",
wctdm_getreg(wc, mod, 11) >> 4,
(wctdm_getreg(wc, mod, 13) >> 2) & 0xf);
}
/* Enable on-hook line monitor */
wctdm_setreg(wc, mod, 5, 0x08);
/* Take values for fxotxgain and fxorxgain and apply them to module */
wctdm_set_hwgain(wc, mod, fxotxgain, 1);
wctdm_set_hwgain(wc, mod, fxorxgain, 0);
#ifdef DEBUG
if (digitalloopback) {
dev_info(&wc->vb.pdev->dev,
"Turning on digital loopback for port %d.\n",
mod->card + 1);
wctdm_setreg(wc, mod, 10, 0x01);
}
#endif
if (debug) {
dev_info(&wc->vb.pdev->dev,
"DEBUG fxotxgain:%i.%i fxorxgain:%i.%i\n",
(wctdm_getreg(wc, mod, 38)/16) ?
-(wctdm_getreg(wc, mod, 38) - 16) :
wctdm_getreg(wc, mod, 38),
(wctdm_getreg(wc, mod, 40)/16) ?
-(wctdm_getreg(wc, mod, 40) - 16) :
wctdm_getreg(wc, mod, 40),
(wctdm_getreg(wc, mod, 39)/16) ?
-(wctdm_getreg(wc, mod, 39) - 16) :
wctdm_getreg(wc, mod, 39),
(wctdm_getreg(wc, mod, 41)/16) ?
-(wctdm_getreg(wc, mod, 41) - 16) :
wctdm_getreg(wc, mod, 41));
}
return 0;
}
static void
wctdm_proslic_set_ts(struct wctdm *wc, struct wctdm_module *mod, int ts)
{
wctdm_setreg(wc, mod, 2, (ts * 8) & 0xff); /* Tx Start low byte 0 */
wctdm_setreg(wc, mod, 3, (ts * 8) >> 8); /* Tx Start high byte 0 */
wctdm_setreg(wc, mod, 4, (ts * 8) & 0xff); /* Rx Start low byte 0 */
wctdm_setreg(wc, mod, 5, (ts * 8) >> 8); /* Rx Start high byte 0 */
if (debug) {
dev_info(&wc->vb.pdev->dev,
"proslic: card %d new timeslot: %d\n",
mod->card + 1, ts);
}
}
static int
wctdm_init_proslic(struct wctdm *wc, struct wctdm_module *const mod,
int fast, int manual, int sane)
{
struct fxs *const fxs = &mod->mod.fxs;
unsigned short tmp[5];
unsigned long flags;
unsigned char r19,r9;
int x;
int fxsmode=0;
int addresses[NUM_CAL_REGS];
#if 0 /* TODO */
if (wc->mods[mod->card & 0xfc].type == QRV)
return -2;
#endif
spin_lock_irqsave(&wc->reglock, flags);
mod->type = FXS;
spin_unlock_irqrestore(&wc->reglock, flags);
/* msleep(100); */
/* Sanity check the ProSLIC */
if (!sane && wctdm_proslic_insane(wc, mod))
return -2;
/* Initialize VMWI settings */
memset(&(fxs->vmwisetting), 0, sizeof(fxs->vmwisetting));
fxs->vmwi_linereverse = 0;
/* By default, don't send on hook */
if (!reversepolarity != !fxs->reversepolarity)
fxs->idletxhookstate = SLIC_LF_ACTIVE_REV;
else
fxs->idletxhookstate = SLIC_LF_ACTIVE_FWD;
if (sane) {
/* Make sure we turn off the DC->DC converter to prevent anything from blowing up */
wctdm_setreg(wc, mod, 14, 0x10);
}
if (wctdm_proslic_init_indirect_regs(wc, mod)) {
dev_info(&wc->vb.pdev->dev,
"Indirect Registers failed to initialize on "
"module %d.\n", mod->card);
return -1;
}
/* Clear scratch pad area */
wctdm_proslic_setreg_indirect(wc, mod, 97, 0);
/* Clear digital loopback */
wctdm_setreg(wc, mod, 8, 0);
/* Revision C optimization */
wctdm_setreg(wc, mod, 108, 0xeb);
/* Disable automatic VBat switching for safety to prevent
* Q7 from accidently turning on and burning out.
* If pulse dialing has trouble at high REN loads change this to 0x17 */
wctdm_setreg(wc, mod, 67, 0x07);
/* Turn off Q7 */
wctdm_setreg(wc, mod, 66, 1);
/* Flush ProSLIC digital filters by setting to clear, while
saving old values */
for (x=0;x<5;x++) {
tmp[x] = wctdm_proslic_getreg_indirect(wc, mod, x + 35);
wctdm_proslic_setreg_indirect(wc, mod, x + 35, 0x8000);
}
/* Power up the DC-DC converter */
if (wctdm_powerup_proslic(wc, mod, fast)) {
dev_notice(&wc->vb.pdev->dev,
"Unable to do INITIAL ProSLIC powerup on "
"module %d\n", mod->card);
return -1;
}
if (!fast) {
/* Check for power leaks */
if (wctdm_proslic_powerleak_test(wc, mod)) {
dev_notice(&wc->vb.pdev->dev,
"ProSLIC module %d failed leakage test. "
"Check for short circuit\n", mod->card);
}
/* Power up again */
if (wctdm_powerup_proslic(wc, mod, fast)) {
dev_notice(&wc->vb.pdev->dev,
"Unable to do FINAL ProSLIC powerup on "
"module %d\n", mod->card);
return -1;
}
#ifndef NO_CALIBRATION
/* Perform calibration */
if (manual) {
if (wctdm_proslic_manual_calibrate(wc, mod)) {
//dev_notice(&wc->vb.pdev->dev, "Proslic failed on Manual Calibration\n");
if (wctdm_proslic_manual_calibrate(wc, mod)) {
dev_notice(&wc->vb.pdev->dev, "Proslic Failed on Second Attempt to Calibrate Manually. (Try -DNO_CALIBRATION in Makefile)\n");
return -1;
}
dev_info(&wc->vb.pdev->dev, "Proslic Passed Manual Calibration on Second Attempt\n");
}
}
else {
if (wctdm_proslic_calibrate(wc, mod)) {
//dev_notice(&wc->vb.pdev->dev, "ProSlic died on Auto Calibration.\n");
if (wctdm_proslic_calibrate(wc, mod)) {
dev_notice(&wc->vb.pdev->dev, "Proslic Failed on Second Attempt to Auto Calibrate\n");
return -1;
}
dev_info(&wc->vb.pdev->dev, "Proslic Passed Auto Calibration on Second Attempt\n");
}
}
/* Perform DC-DC calibration */
wctdm_setreg(wc, mod, 93, 0x99);
r19 = wctdm_getreg(wc, mod, 107);
if ((r19 < 0x2) || (r19 > 0xd)) {
dev_notice(&wc->vb.pdev->dev, "DC-DC cal has a surprising direct 107 of 0x%02x!\n", r19);
wctdm_setreg(wc, mod, 107, 0x8);
}
/* Save calibration vectors */
for (x = 0; x < NUM_CAL_REGS; x++)
addresses[x] = 96 + x;
wctdm_getregs(wc, mod, addresses, ARRAY_SIZE(addresses));
for (x = 0; x < NUM_CAL_REGS; x++)
fxs->calregs.vals[x] = addresses[x];
#endif
} else {
/* Restore calibration registers */
for (x = 0; x < NUM_CAL_REGS; x++)
wctdm_setreg(wc, mod, 96 + x, fxs->calregs.vals[x]);
}
/* Calibration complete, restore original values */
for (x=0;x<5;x++) {
wctdm_proslic_setreg_indirect(wc, mod, x + 35, tmp[x]);
}
if (wctdm_proslic_verify_indirect_regs(wc, mod)) {
dev_info(&wc->vb.pdev->dev, "Indirect Registers failed verification.\n");
return -1;
}
#if 0
/* Disable Auto Power Alarm Detect and other "features" */
wctdm_setreg(wc, card, 67, 0x0e);
blah = wctdm_getreg(wc, card, 67);
#endif
#if 0
if (wctdm_proslic_setreg_indirect(wc, card, 97, 0x0)) { // Stanley: for the bad recording fix
dev_info(&wc->vb.pdev->dev, "ProSlic IndirectReg Died.\n");
return -1;
}
#endif
/* U-Law 8-bit interface */
wctdm_proslic_set_ts(wc, mod, mod->card);
wctdm_setreg(wc, mod, 18, 0xff); /* clear all interrupt */
wctdm_setreg(wc, mod, 19, 0xff);
wctdm_setreg(wc, mod, 20, 0xff);
wctdm_setreg(wc, mod, 22, 0xff);
wctdm_setreg(wc, mod, 73, 0x04);
wctdm_setreg(wc, mod, 69, 0x4);
if (fxshonormode) {
static const int ACIM2TISS[16] = { 0x0, 0x1, 0x4, 0x5, 0x7,
0x0, 0x0, 0x6, 0x0, 0x0,
0x0, 0x2, 0x0, 0x3 };
fxsmode = ACIM2TISS[fxo_modes[_opermode].acim];
wctdm_setreg(wc, mod, 10, 0x08 | fxsmode);
if (fxo_modes[_opermode].ring_osc) {
wctdm_proslic_setreg_indirect(wc, mod, 20,
fxo_modes[_opermode].ring_osc);
}
if (fxo_modes[_opermode].ring_x) {
wctdm_proslic_setreg_indirect(wc, mod, 21,
fxo_modes[_opermode].ring_x);
}
}
if (lowpower)
wctdm_setreg(wc, mod, 72, 0x10);
#if 0
wctdm_setreg(wc, card, 21, 0x00); // enable interrupt
wctdm_setreg(wc, card, 22, 0x02); // Loop detection interrupt
wctdm_setreg(wc, card, 23, 0x01); // DTMF detection interrupt
#endif
#if 0
/* Enable loopback */
wctdm_setreg(wc, card, 8, 0x2);
wctdm_setreg(wc, card, 14, 0x0);
wctdm_setreg(wc, card, 64, 0x0);
wctdm_setreg(wc, card, 1, 0x08);
#endif
if (fastringer) {
/* Speed up Ringer */
wctdm_proslic_setreg_indirect(wc, mod, 20, 0x7e6d);
wctdm_proslic_setreg_indirect(wc, mod, 21, 0x01b9);
/* Beef up Ringing voltage to 89V */
if (boostringer) {
wctdm_setreg(wc, mod, 74, 0x3f);
if (wctdm_proslic_setreg_indirect(wc, mod, 21, 0x247))
return -1;
dev_info(&wc->vb.pdev->dev,
"Boosting fast ringer on slot %d (89V peak)\n",
mod->card + 1);
} else if (lowpower) {
if (wctdm_proslic_setreg_indirect(wc, mod, 21, 0x14b))
return -1;
dev_info(&wc->vb.pdev->dev,
"Reducing fast ring power on slot %d "
"(50V peak)\n", mod->card + 1);
} else
dev_info(&wc->vb.pdev->dev,
"Speeding up ringer on slot %d (25Hz)\n",
mod->card + 1);
} else {
/* Beef up Ringing voltage to 89V */
if (boostringer) {
wctdm_setreg(wc, mod, 74, 0x3f);
if (wctdm_proslic_setreg_indirect(wc, mod, 21, 0x1d1))
return -1;
dev_info(&wc->vb.pdev->dev,
"Boosting ringer on slot %d (89V peak)\n",
mod->card + 1);
} else if (lowpower) {
if (wctdm_proslic_setreg_indirect(wc, mod, 21, 0x108))
return -1;
dev_info(&wc->vb.pdev->dev,
"Reducing ring power on slot %d "
"(50V peak)\n", mod->card + 1);
}
}
if (fxstxgain || fxsrxgain) {
r9 = wctdm_getreg(wc, mod, 9);
switch (fxstxgain) {
case 35:
r9+=8;
break;
case -35:
r9+=4;
break;
case 0:
break;
}
switch (fxsrxgain) {
case 35:
r9+=2;
break;
case -35:
r9+=1;
break;
case 0:
break;
}
wctdm_setreg(wc, mod, 9, r9);
}
if (debug) {
dev_info(&wc->vb.pdev->dev,
"DEBUG: fxstxgain:%s fxsrxgain:%s\n",
((wctdm_getreg(wc, mod, 9) / 8) == 1) ?
"3.5" : (((wctdm_getreg(wc, mod, 9) / 4) == 1) ?
"-3.5" : "0.0"),
((wctdm_getreg(wc, mod, 9) / 2) == 1) ?
"3.5" : ((wctdm_getreg(wc, mod, 9) % 2) ?
"-3.5" : "0.0"));
}
fxs->lasttxhook = fxs->idletxhookstate;
wctdm_setreg(wc, mod, LINE_STATE, fxs->lasttxhook);
/* Preset the shadow register so that we won't get a power alarm when
* we finish initialization, otherwise the line state register may not
* have been read yet. */
fxs->linefeed_control_shadow = fxs->lasttxhook;
return 0;
}
static void
wctdm_qrvdri_set_ts(struct wctdm *wc, struct wctdm_module *mod, int ts)
{
wctdm_setreg(wc, mod, 0x13, ts + 0x80); /* codec 2 tx, ts0 */
wctdm_setreg(wc, mod, 0x17, ts + 0x80); /* codec 0 rx, ts0 */
wctdm_setreg(wc, mod, 0x14, ts + 0x81); /* codec 1 tx, ts1 */
wctdm_setreg(wc, mod, 0x18, ts + 0x81); /* codec 1 rx, ts1 */
if (debug) {
dev_info(&wc->vb.pdev->dev,
"qrvdri: card %d new timeslot: %d\n",
mod->card + 1, ts);
}
}
static int wctdm_init_qrvdri(struct wctdm *wc, int card)
{
struct wctdm_module *const mod = &wc->mods[card];
unsigned char x,y;
if (BRI == wc->mods[card & 0xfc].type)
return -2;
/* have to set this, at least for now */
mod->type = QRV;
if (!(card & 3)) { /* if at base of card, reset and write it */
struct qrv *const qrv = &mod->mod.qrv;
struct qrv *const qrv1 = &wc->mods[card + 1].mod.qrv;
struct qrv *const qrv2 = &wc->mods[card + 2].mod.qrv;
struct qrv *const qrv3 = &wc->mods[card + 3].mod.qrv;
wctdm_setreg(wc, mod, 0, 0x80);
wctdm_setreg(wc, mod, 0, 0x55);
wctdm_setreg(wc, mod, 1, 0x69);
qrv->hook = qrv1->hook = 0;
qrv2->hook = qrv3->hook = 0xff;
qrv->debouncetime = qrv1->debouncetime = QRV_DEBOUNCETIME;
qrv->debtime = qrv1->debtime = 0;
qrv->radmode = qrv1->radmode = 0;
qrv->txgain = qrv1->txgain = 3599;
qrv->rxgain = qrv1->rxgain = 1199;
} else { /* channel is on same card as base, no need to test */
if (wc->mods[card & 0x7c].type == QRV) {
/* only lower 2 are valid */
if (!(card & 2))
return 0;
}
mod->type = NONE;
return 1;
}
x = wctdm_getreg(wc, mod, 0);
y = wctdm_getreg(wc, mod, 1);
/* if not a QRV card, return as such */
if ((x != 0x55) || (y != 0x69))
{
mod->type = NONE;
return 1;
}
for (x = 0; x < 0x30; x++) {
if ((x >= 0x1c) && (x <= 0x1e))
wctdm_setreg(wc, mod, x, 0xff);
else
wctdm_setreg(wc, mod, x, 0);
}
wctdm_setreg(wc, mod, 0, 0x80);
msleep(100);
wctdm_setreg(wc, mod, 0, 0x10);
wctdm_setreg(wc, mod, 0, 0x10);
msleep(100);
/* set up modes */
wctdm_setreg(wc, mod, 0, 0x1c);
/* set up I/O directions */
wctdm_setreg(wc, mod, 1, 0x33);
wctdm_setreg(wc, mod, 2, 0x0f);
wctdm_setreg(wc, mod, 5, 0x0f);
/* set up I/O to quiescent state */
wctdm_setreg(wc, mod, 3, 0x11); /* D0-7 */
wctdm_setreg(wc, mod, 4, 0xa); /* D8-11 */
wctdm_setreg(wc, mod, 7, 0); /* CS outputs */
wctdm_qrvdri_set_ts(wc, mod, card);
/* set up for max gains */
wctdm_setreg(wc, mod, 0x26, 0x24);
wctdm_setreg(wc, mod, 0x27, 0x24);
wctdm_setreg(wc, mod, 0x0b, 0x01); /* "Transmit" gain codec 0 */
wctdm_setreg(wc, mod, 0x0c, 0x01); /* "Transmit" gain codec 1 */
wctdm_setreg(wc, mod, 0x0f, 0xff); /* "Receive" gain codec 0 */
wctdm_setreg(wc, mod, 0x10, 0xff); /* "Receive" gain codec 1 */
return 0;
}
static void qrv_dosetup(struct dahdi_chan *chan, struct wctdm *wc)
{
struct wctdm_module *qrvmod;
struct wctdm_module *nextqrvmod;
int qrvcard;
unsigned char r;
long l;
/* actually do something with the values */
qrvcard = (chan->chanpos - 1) & 0xfc;
qrvmod = &wc->mods[qrvcard];
nextqrvmod = &wc->mods[qrvcard + 1];
if (debug) {
dev_info(&wc->vb.pdev->dev,
"@@@@@ radmodes: %d,%d rxgains: %d,%d "
"txgains: %d,%d\n", wc->mods[qrvcard].mod.qrv.radmode,
nextqrvmod->mod.qrv.radmode,
wc->mods[qrvcard].mod.qrv.rxgain,
nextqrvmod->mod.qrv.rxgain,
wc->mods[qrvcard].mod.qrv.txgain,
nextqrvmod->mod.qrv.txgain);
}
r = 0;
if (qrvmod->mod.qrv.radmode & RADMODE_DEEMP)
r |= 4;
if (nextqrvmod->mod.qrv.radmode & RADMODE_DEEMP)
r |= 8;
if (qrvmod->mod.qrv.rxgain < 1200)
r |= 1;
if (nextqrvmod->mod.qrv.rxgain < 1200)
r |= 2;
wctdm_setreg(wc, qrvmod, 7, r);
if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 7 to %02x hex\n",r);
r = 0;
if (qrvmod->mod.qrv.radmode & RADMODE_PREEMP)
r |= 3;
else if (qrvmod->mod.qrv.txgain >= 3600)
r |= 1;
else if (qrvmod->mod.qrv.txgain >= 1200)
r |= 2;
if (nextqrvmod->mod.qrv.radmode & RADMODE_PREEMP)
r |= 0xc;
else if (nextqrvmod->mod.qrv.txgain >= 3600)
r |= 4;
else if (nextqrvmod->mod.qrv.txgain >= 1200)
r |= 8;
wctdm_setreg(wc, qrvmod, 4, r);
if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 4 to %02x hex\n",r);
r = 0;
if (qrvmod->mod.qrv.rxgain >= 2400)
r |= 1;
if (nextqrvmod->mod.qrv.rxgain >= 2400)
r |= 2;
wctdm_setreg(wc, qrvmod, 0x25, r);
if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x25 to %02x hex\n",r);
r = 0;
if (qrvmod->mod.qrv.txgain < 2400)
r |= 1;
else
r |= 4;
if (nextqrvmod->mod.qrv.txgain < 2400)
r |= 8;
else
r |= 0x20;
wctdm_setreg(wc, qrvmod, 0x26, r);
if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x26 to %02x hex\n",r);
l = ((long)(qrvmod->mod.qrv.rxgain % 1200) * 10000) / 46875;
if (l == 0) l = 1;
if (qrvmod->mod.qrv.rxgain >= 2400)
l += 181;
wctdm_setreg(wc, qrvmod, 0x0b, (unsigned char)l);
if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x0b to %02x hex\n",(unsigned char)l);
l = ((long)(nextqrvmod->mod.qrv.rxgain % 1200) * 10000) / 46875;
if (l == 0) l = 1;
if (nextqrvmod->mod.qrv.rxgain >= 2400)
l += 181;
wctdm_setreg(wc, qrvmod, 0x0c, (unsigned char)l);
if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x0c to %02x hex\n",(unsigned char)l);
l = ((long)(qrvmod->mod.qrv.txgain % 1200) * 10000) / 46875;
if (l == 0) l = 1;
wctdm_setreg(wc, qrvmod, 0x0f, (unsigned char)l);
if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x0f to %02x hex\n", (unsigned char)l);
l = ((long)(nextqrvmod->mod.qrv.txgain % 1200) * 10000) / 46875;
if (l == 0) l = 1;
wctdm_setreg(wc, qrvmod, 0x10, (unsigned char)l);
if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x10 to %02x hex\n",(unsigned char)l);
return;
}
static void wctdm24xxp_get_fxs_regs(struct wctdm *wc, struct wctdm_module *mod,
struct wctdm_regs *regs)
{
int x;
for (x = 0; x < NUM_INDIRECT_REGS; x++)
regs->indirect[x] = wctdm_proslic_getreg_indirect(wc, mod, x);
for (x = 0; x < NUM_REGS; x++)
regs->direct[x] = wctdm_getreg(wc, mod, x);
}
static void wctdm24xxp_get_fxo_regs(struct wctdm *wc, struct wctdm_module *mod,
struct wctdm_regs *regs)
{
int x;
for (x = 0; x < NUM_FXO_REGS; x++)
regs->direct[x] = wctdm_getreg(wc, mod, x);
}
static void wctdm24xxp_get_qrv_regs(struct wctdm *wc, struct wctdm_module *mod,
struct wctdm_regs *regs)
{
int x;
for (x = 0; x < 0x32; x++)
regs->direct[x] = wctdm_getreg(wc, mod, x);
}
static int wctdm_ioctl(struct dahdi_chan *chan, unsigned int cmd, unsigned long data)
{
struct wctdm_stats stats;
struct wctdm_regop regop;
struct wctdm_echo_coefs echoregs;
struct dahdi_hwgain hwgain;
struct wctdm *wc = chan->pvt;
int x;
union {
struct dahdi_radio_stat s;
struct dahdi_radio_param p;
} stack;
struct wctdm_module *const mod = &wc->mods[chan->chanpos - 1];
struct fxs *const fxs = &mod->mod.fxs;
switch (cmd) {
case DAHDI_ONHOOKTRANSFER:
if (mod->type != FXS)
return -EINVAL;
if (get_user(x, (__user int *) data))
return -EFAULT;
/* Active mode when idle */
fxs->idletxhookstate = POLARITY_XOR(fxs) ?
SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;
if (((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_ACTIVE_FWD) ||
((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_ACTIVE_REV)) {
int res;
res = set_lasttxhook_interruptible(wc, fxs,
(POLARITY_XOR(fxs) ?
SLIC_LF_OHTRAN_REV : SLIC_LF_OHTRAN_FWD),
&mod->sethook);
if (debug & DEBUG_CARD) {
if (res) {
dev_info(&wc->vb.pdev->dev,
"Channel %d TIMEOUT: "
"OnHookTransfer start\n",
chan->chanpos - 1);
} else {
dev_info(&wc->vb.pdev->dev,
"Channel %d OnHookTransfer "
"start\n", chan->chanpos - 1);
}
}
}
fxs->ohttimer = wc->framecount + x;
fxs->oht_active = 1;
break;
case DAHDI_VMWI_CONFIG:
if (mod->type != FXS)
return -EINVAL;
if (copy_from_user(&(fxs->vmwisetting),
(__user void *)data,
sizeof(fxs->vmwisetting)))
return -EFAULT;
set_vmwi(wc, mod);
break;
case DAHDI_VMWI:
if (mod->type != FXS)
return -EINVAL;
if (get_user(x, (__user int *) data))
return -EFAULT;
if (0 > x)
return -EFAULT;
fxs->vmwi_active_messages = x;
set_vmwi(wc, mod);
break;
case WCTDM_GET_STATS:
if (mod->type == FXS) {
stats.tipvolt = wctdm_getreg(wc, mod, 80) * -376;
stats.ringvolt = wctdm_getreg(wc, mod, 81) * -376;
stats.batvolt = wctdm_getreg(wc, mod, 82) * -376;
} else if (mod->type == FXO) {
stats.tipvolt = (s8)wctdm_getreg(wc, mod, 29) * 1000;
stats.ringvolt = (s8)wctdm_getreg(wc, mod, 29) * 1000;
stats.batvolt = (s8)wctdm_getreg(wc, mod, 29) * 1000;
} else
return -EINVAL;
if (copy_to_user((__user void *) data, &stats, sizeof(stats)))
return -EFAULT;
break;
case WCTDM_GET_REGS:
{
struct wctdm_regs *regs = kzalloc(sizeof(*regs), GFP_KERNEL);
if (!regs)
return -ENOMEM;
if (mod->type == FXS)
wctdm24xxp_get_fxs_regs(wc, mod, regs);
else if (mod->type == QRV)
wctdm24xxp_get_qrv_regs(wc, mod, regs);
else
wctdm24xxp_get_fxo_regs(wc, mod, regs);
if (copy_to_user((__user void *)data, regs, sizeof(*regs))) {
kfree(regs);
return -EFAULT;
}
kfree(regs);
break;
}
case WCTDM_SET_REG:
if (copy_from_user(&regop, (__user void *) data, sizeof(regop)))
return -EFAULT;
if (regop.indirect) {
if (mod->type != FXS)
return -EINVAL;
dev_info(&wc->vb.pdev->dev, "Setting indirect %d to 0x%04x on %d\n", regop.reg, regop.val, chan->chanpos);
wctdm_proslic_setreg_indirect(wc, mod, regop.reg,
regop.val);
} else {
regop.val &= 0xff;
if (regop.reg == LINE_STATE) {
/* Set feedback register to indicate the new state that is being set */
fxs->lasttxhook = (regop.val & 0x0f) | SLIC_LF_OPPENDING;
}
dev_info(&wc->vb.pdev->dev, "Setting direct %d to %04x on %d\n", regop.reg, regop.val, chan->chanpos);
wctdm_setreg(wc, mod, regop.reg, regop.val);
}
break;
case WCTDM_SET_ECHOTUNE:
dev_info(&wc->vb.pdev->dev, "-- Setting echo registers: \n");
if (copy_from_user(&echoregs, (__user void *) data, sizeof(echoregs)))
return -EFAULT;
if (mod->type == FXO) {
/* Set the ACIM register */
wctdm_setreg(wc, mod, 30, echoregs.acim);
/* Set the digital echo canceller registers */
wctdm_setreg(wc, mod, 45, echoregs.coef1);
wctdm_setreg(wc, mod, 46, echoregs.coef2);
wctdm_setreg(wc, mod, 47, echoregs.coef3);
wctdm_setreg(wc, mod, 48, echoregs.coef4);
wctdm_setreg(wc, mod, 49, echoregs.coef5);
wctdm_setreg(wc, mod, 50, echoregs.coef6);
wctdm_setreg(wc, mod, 51, echoregs.coef7);
wctdm_setreg(wc, mod, 52, echoregs.coef8);
dev_info(&wc->vb.pdev->dev, "-- Set echo registers successfully\n");
break;
} else {
return -EINVAL;
}
break;
case DAHDI_SET_HWGAIN:
if (copy_from_user(&hwgain, (__user void *) data, sizeof(hwgain)))
return -EFAULT;
wctdm_set_hwgain(wc, mod, hwgain.newgain, hwgain.tx);
if (debug)
dev_info(&wc->vb.pdev->dev, "Setting hwgain on channel %d to %d for %s direction\n",
chan->chanpos-1, hwgain.newgain, hwgain.tx ? "tx" : "rx");
break;
#ifdef VPM_SUPPORT
case DAHDI_TONEDETECT:
/* Hardware DTMF detection is not supported. */
return -ENOSYS;
#endif
case DAHDI_SETPOLARITY:
if (get_user(x, (__user int *) data))
return -EFAULT;
if (mod->type != FXS)
return -EINVAL;
/* Can't change polarity while ringing or when open */
if (((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_RINGING) ||
((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_OPEN)) {
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Channel %d Unable to Set Polarity\n", chan->chanpos - 1);
}
return -EINVAL;
}
fxs->reversepolarity = (x) ? 1 : 0;
if (POLARITY_XOR(fxs)) {
fxs->idletxhookstate |= SLIC_LF_REVMASK;
x = fxs->lasttxhook & SLIC_LF_SETMASK;
x |= SLIC_LF_REVMASK;
if (x != fxs->lasttxhook) {
x = set_lasttxhook_interruptible(wc, fxs, x,
&mod->sethook);
if ((debug & DEBUG_CARD) && x) {
dev_info(&wc->vb.pdev->dev,
"Channel %d TIMEOUT: Set Reverse "
"Polarity\n", chan->chanpos - 1);
} else if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Channel %d Set Reverse Polarity\n",
chan->chanpos - 1);
}
}
} else {
fxs->idletxhookstate &= ~SLIC_LF_REVMASK;
x = fxs->lasttxhook & SLIC_LF_SETMASK;
x &= ~SLIC_LF_REVMASK;
if (x != fxs->lasttxhook) {
x = set_lasttxhook_interruptible(wc, fxs, x,
&mod->sethook);
if ((debug & DEBUG_CARD) & x) {
dev_info(&wc->vb.pdev->dev,
"Channel %d TIMEOUT: Set Normal "
"Polarity\n", chan->chanpos - 1);
} else if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Channel %d Set Normal Polarity\n",
chan->chanpos - 1);
}
}
}
break;
case DAHDI_RADIO_GETPARAM:
if (mod->type != QRV)
return -ENOTTY;
if (copy_from_user(&stack.p, (__user void *) data, sizeof(stack.p)))
return -EFAULT;
stack.p.data = 0; /* start with 0 value in output */
switch(stack.p.radpar) {
case DAHDI_RADPAR_INVERTCOR:
if (mod->mod.qrv.radmode & RADMODE_INVERTCOR)
stack.p.data = 1;
break;
case DAHDI_RADPAR_IGNORECOR:
if (mod->mod.qrv.radmode & RADMODE_IGNORECOR)
stack.p.data = 1;
break;
case DAHDI_RADPAR_IGNORECT:
if (mod->mod.qrv.radmode & RADMODE_IGNORECT)
stack.p.data = 1;
break;
case DAHDI_RADPAR_EXTRXTONE:
stack.p.data = 0;
if (mod->mod.qrv.radmode & RADMODE_EXTTONE) {
stack.p.data = 1;
if (mod->mod.qrv.radmode & RADMODE_EXTINVERT)
stack.p.data = 2;
}
break;
case DAHDI_RADPAR_DEBOUNCETIME:
stack.p.data = mod->mod.qrv.debouncetime;
break;
case DAHDI_RADPAR_RXGAIN:
stack.p.data = mod->mod.qrv.rxgain - 1199;
break;
case DAHDI_RADPAR_TXGAIN:
stack.p.data = mod->mod.qrv.txgain - 3599;
break;
case DAHDI_RADPAR_DEEMP:
stack.p.data = 0;
if (mod->mod.qrv.radmode & RADMODE_DEEMP)
stack.p.data = 1;
break;
case DAHDI_RADPAR_PREEMP:
stack.p.data = 0;
if (mod->mod.qrv.radmode & RADMODE_PREEMP)
stack.p.data = 1;
break;
default:
return -EINVAL;
}
if (copy_to_user((__user void *) data, &stack.p, sizeof(stack.p)))
return -EFAULT;
break;
case DAHDI_RADIO_SETPARAM:
if (mod->type != QRV)
return -ENOTTY;
if (copy_from_user(&stack.p, (__user void *) data, sizeof(stack.p)))
return -EFAULT;
switch(stack.p.radpar) {
case DAHDI_RADPAR_INVERTCOR:
if (stack.p.data)
mod->mod.qrv.radmode |= RADMODE_INVERTCOR;
else
mod->mod.qrv.radmode &= ~RADMODE_INVERTCOR;
return 0;
case DAHDI_RADPAR_IGNORECOR:
if (stack.p.data)
mod->mod.qrv.radmode |= RADMODE_IGNORECOR;
else
mod->mod.qrv.radmode &= ~RADMODE_IGNORECOR;
return 0;
case DAHDI_RADPAR_IGNORECT:
if (stack.p.data)
mod->mod.qrv.radmode |= RADMODE_IGNORECT;
else
mod->mod.qrv.radmode &= ~RADMODE_IGNORECT;
return 0;
case DAHDI_RADPAR_EXTRXTONE:
if (stack.p.data)
mod->mod.qrv.radmode |= RADMODE_EXTTONE;
else
mod->mod.qrv.radmode &= ~RADMODE_EXTTONE;
if (stack.p.data > 1)
mod->mod.qrv.radmode |= RADMODE_EXTINVERT;
else
mod->mod.qrv.radmode &= ~RADMODE_EXTINVERT;
return 0;
case DAHDI_RADPAR_DEBOUNCETIME:
mod->mod.qrv.debouncetime = stack.p.data;
return 0;
case DAHDI_RADPAR_RXGAIN:
/* if out of range */
if ((stack.p.data <= -1200) || (stack.p.data > 1552))
{
return -EINVAL;
}
mod->mod.qrv.rxgain = stack.p.data + 1199;
break;
case DAHDI_RADPAR_TXGAIN:
/* if out of range */
if (mod->mod.qrv.radmode & RADMODE_PREEMP) {
if ((stack.p.data <= -2400) ||
(stack.p.data > 0))
return -EINVAL;
} else {
if ((stack.p.data <= -3600) ||
(stack.p.data > 1200))
return -EINVAL;
}
mod->mod.qrv.txgain = stack.p.data + 3599;
break;
case DAHDI_RADPAR_DEEMP:
if (stack.p.data)
mod->mod.qrv.radmode |= RADMODE_DEEMP;
else
mod->mod.qrv.radmode &= ~RADMODE_DEEMP;
mod->mod.qrv.rxgain = 1199;
break;
case DAHDI_RADPAR_PREEMP:
if (stack.p.data)
mod->mod.qrv.radmode |= RADMODE_PREEMP;
else
mod->mod.qrv.radmode &= ~RADMODE_PREEMP;
mod->mod.qrv.txgain = 3599;
break;
default:
return -EINVAL;
}
qrv_dosetup(chan,wc);
return 0;
default:
return -ENOTTY;
}
return 0;
}
static int wctdm_open(struct dahdi_chan *chan)
{
struct wctdm *const wc = chan->pvt;
unsigned long flags;
struct wctdm_module *const mod = &wc->mods[chan->chanpos - 1];
#if 0
if (wc->dead)
return -ENODEV;
#endif
if (mod->type == FXO) {
/* Reset the mwi indicators */
spin_lock_irqsave(&wc->reglock, flags);
mod->mod.fxo.neonmwi_debounce = 0;
mod->mod.fxo.neonmwi_offcounter = 0;
mod->mod.fxo.neonmwi_state = 0;
spin_unlock_irqrestore(&wc->reglock, flags);
}
return 0;
}
static inline struct wctdm *span_to_wctdm(struct dahdi_span *span)
{
struct wctdm_span *s = container_of(span, struct wctdm_span, span);
return s->wc;
}
static int wctdm_watchdog(struct dahdi_span *span, int event)
{
struct wctdm *wc = span_to_wctdm(span);
dev_info(&wc->vb.pdev->dev, "TDM: Called watchdog\n");
return 0;
}
static int wctdm_close(struct dahdi_chan *chan)
{
struct wctdm *wc;
int x;
signed char reg;
wc = chan->pvt;
for (x = 0; x < wc->mods_per_board; x++) {
struct wctdm_module *const mod = &wc->mods[x];
if (FXS == mod->type) {
mod->mod.fxs.idletxhookstate =
POLARITY_XOR(&mod->mod.fxs) ? SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;
} else if (QRV == mod->type) {
int qrvcard = x & 0xfc;
mod->mod.qrv.hook = 0;
wc->mods[x + 2].mod.qrv.hook = 0xff;
mod->mod.qrv.debouncetime = QRV_DEBOUNCETIME;
mod->mod.qrv.debtime = 0;
mod->mod.qrv.radmode = 0;
mod->mod.qrv.txgain = 3599;
mod->mod.qrv.rxgain = 1199;
reg = 0;
if (!wc->mods[qrvcard].mod.qrv.hook)
reg |= 1;
if (!wc->mods[qrvcard + 1].mod.qrv.hook)
reg |= 0x10;
wc->mods[qrvcard].sethook = CMD_WR(3, reg);
qrv_dosetup(chan,wc);
}
}
return 0;
}
static int wctdm_hooksig(struct dahdi_chan *chan, enum dahdi_txsig txsig)
{
struct wctdm *wc = chan->pvt;
int reg = 0;
struct wctdm_module *const mod = &wc->mods[chan->chanpos - 1];
if (mod->type == QRV) {
const int qrvcard = (chan->chanpos - 1) & 0xfc;
switch(txsig) {
case DAHDI_TXSIG_START:
case DAHDI_TXSIG_OFFHOOK:
mod->mod.qrv.hook = 1;
break;
case DAHDI_TXSIG_ONHOOK:
mod->mod.qrv.hook = 0;
break;
default:
dev_notice(&wc->vb.pdev->dev, "wctdm24xxp: Can't set tx state to %d\n", txsig);
}
reg = 0;
if (!wc->mods[qrvcard].mod.qrv.hook)
reg |= 1;
if (!wc->mods[qrvcard + 1].mod.qrv.hook)
reg |= 0x10;
wc->mods[qrvcard].sethook = CMD_WR(3, reg);
/* wctdm_setreg(wc, qrvcard, 3, reg); */
} else if (mod->type == FXO) {
switch(txsig) {
case DAHDI_TXSIG_START:
case DAHDI_TXSIG_OFFHOOK:
mod->mod.fxo.offhook = 1;
mod->sethook = CMD_WR(5, 0x9);
/* wctdm_setreg(wc, chan->chanpos - 1, 5, 0x9); */
break;
case DAHDI_TXSIG_ONHOOK:
mod->mod.fxo.offhook = 0;
mod->sethook = CMD_WR(5, 0x8);
/* wctdm_setreg(wc, chan->chanpos - 1, 5, 0x8); */
break;
default:
dev_notice(&wc->vb.pdev->dev, "wctdm24xxp: Can't set tx state to %d\n", txsig);
}
} else if (mod->type == FXS) {
wctdm_fxs_hooksig(wc, mod, txsig);
}
return 0;
}
static void wctdm_dacs_connect(struct wctdm *wc, int srccard, int dstcard)
{
struct wctdm_module *const srcmod = &wc->mods[srccard];
struct wctdm_module *const dstmod = &wc->mods[dstcard];
unsigned int type;
if (wc->mods[dstcard].dacssrc > -1) {
dev_notice(&wc->vb.pdev->dev, "wctdm_dacs_connect: Can't have double sourcing yet!\n");
return;
}
type = wc->mods[srccard].type;
if ((type == FXS) || (type == FXO)) {
dev_notice(&wc->vb.pdev->dev,
"wctdm_dacs_connect: Unsupported modtype for "
"card %d\n", srccard);
return;
}
type = wc->mods[dstcard].type;
if ((type != FXS) && (type != FXO)) {
dev_notice(&wc->vb.pdev->dev,
"wctdm_dacs_connect: Unsupported modtype "
"for card %d\n", dstcard);
return;
}
if (debug) {
dev_info(&wc->vb.pdev->dev,
"connect %d => %d\n", srccard, dstcard);
}
dstmod->dacssrc = srccard;
/* make srccard transmit to srccard+24 on the TDM bus */
if (srcmod->type == FXS) {
/* proslic */
wctdm_setreg(wc, srcmod, PCM_XMIT_START_COUNT_LSB,
((srccard+24) * 8) & 0xff);
wctdm_setreg(wc, srcmod, PCM_XMIT_START_COUNT_MSB,
((srccard+24) * 8) >> 8);
} else if (srcmod->type == FXO) {
/* daa TX */
wctdm_setreg(wc, srcmod, 34, ((srccard+24) * 8) & 0xff);
wctdm_setreg(wc, srcmod, 35, ((srccard+24) * 8) >> 8);
}
/* have dstcard receive from srccard+24 on the TDM bus */
if (dstmod->type == FXS) {
/* proslic */
wctdm_setreg(wc, dstmod, PCM_RCV_START_COUNT_LSB,
((srccard+24) * 8) & 0xff);
wctdm_setreg(wc, dstmod, PCM_RCV_START_COUNT_MSB,
((srccard+24) * 8) >> 8);
} else if (dstmod->type == FXO) {
/* daa RX */
wctdm_setreg(wc, dstmod, 36, ((srccard+24) * 8) & 0xff);
wctdm_setreg(wc, dstmod, 37, ((srccard+24) * 8) >> 8);
}
}
static void wctdm_dacs_disconnect(struct wctdm *wc, int card)
{
struct wctdm_module *const mod = &wc->mods[card];
struct wctdm_module *dacssrc;
if (mod->dacssrc <= -1)
return;
dacssrc = &wc->mods[mod->dacssrc];
if (debug) {
dev_info(&wc->vb.pdev->dev, "wctdm_dacs_disconnect: "
"restoring TX for %d and RX for %d\n",
mod->dacssrc, card);
}
/* restore TX (source card) */
if (dacssrc->type == FXS) {
wctdm_setreg(wc, dacssrc, PCM_XMIT_START_COUNT_LSB,
(mod->dacssrc * 8) & 0xff);
wctdm_setreg(wc, dacssrc, PCM_XMIT_START_COUNT_MSB,
(mod->dacssrc * 8) >> 8);
} else if (dacssrc->type == FXO) {
wctdm_setreg(wc, mod, 34, (card * 8) & 0xff);
wctdm_setreg(wc, mod, 35, (card * 8) >> 8);
} else {
dev_warn(&wc->vb.pdev->dev,
"WARNING: wctdm_dacs_disconnect() called "
"on unsupported modtype\n");
}
/* restore RX (this card) */
if (FXS == mod->type) {
wctdm_setreg(wc, mod, PCM_RCV_START_COUNT_LSB,
(card * 8) & 0xff);
wctdm_setreg(wc, mod, PCM_RCV_START_COUNT_MSB,
(card * 8) >> 8);
} else if (FXO == mod->type) {
wctdm_setreg(wc, mod, 36, (card * 8) & 0xff);
wctdm_setreg(wc, mod, 37, (card * 8) >> 8);
} else {
dev_warn(&wc->vb.pdev->dev,
"WARNING: wctdm_dacs_disconnect() called "
"on unsupported modtype\n");
}
mod->dacssrc = -1;
}
static int wctdm_dacs(struct dahdi_chan *dst, struct dahdi_chan *src)
{
struct wctdm *wc;
if (!nativebridge)
return 0; /* should this return -1 since unsuccessful? */
wc = dst->pvt;
if (src) {
wctdm_dacs_connect(wc, src->chanpos - 1, dst->chanpos - 1);
if (debug)
dev_info(&wc->vb.pdev->dev, "dacs connecct: %d -> %d!\n\n", src->chanpos, dst->chanpos);
} else {
wctdm_dacs_disconnect(wc, dst->chanpos - 1);
if (debug)
dev_info(&wc->vb.pdev->dev, "dacs disconnect: %d!\n", dst->chanpos);
}
return 0;
}
/**
* wctdm_wait_for_ready
*
* Check if the board has finished any setup and is ready to start processing
* calls.
*/
int wctdm_wait_for_ready(struct wctdm *wc)
{
while (!is_initialized(wc)) {
if (fatal_signal_pending(current))
return -EIO;
msleep_interruptible(250);
}
return 0;
}
static int wctdm_enable_hw_preechocan(struct dahdi_chan *chan)
{
struct wctdm *wc = chan->pvt;
struct wctdm_chan *wchan = container_of(chan, struct wctdm_chan, chan);
if (!wc->vpmoct)
return 0;
return vpmoct_preecho_enable(wc->vpmoct, wchan->timeslot);
}
static void wctdm_disable_hw_preechocan(struct dahdi_chan *chan)
{
struct wctdm *wc = chan->pvt;
struct wctdm_chan *wchan = container_of(chan, struct wctdm_chan, chan);
if (!wc->vpmoct)
return;
vpmoct_preecho_disable(wc->vpmoct, wchan->timeslot);
}
/**
* wctdm_chanconfig - Called when the channels are being configured.
*
* Ensure that the card is completely ready to go before we allow the channels
* to be completely configured. This is to allow lengthy initialization
* actions to take place in background on driver load and ensure we're synced
* up by the time dahdi_cfg is run.
*
*/
static int
wctdm_chanconfig(struct file *file, struct dahdi_chan *chan, int sigtype)
{
struct wctdm *wc = chan->pvt;
if ((file->f_flags & O_NONBLOCK) && !is_initialized(wc))
return -EAGAIN;
return wctdm_wait_for_ready(wc);
}
/*
* wctdm24xxp_assigned - Called when span is assigned.
* @span: The span that is now assigned.
*
* This function is called by the core of DAHDI after the span number and
* channel numbers have been assigned.
*
*/
static void wctdm24xxp_assigned(struct dahdi_span *span)
{
struct dahdi_span *s;
struct dahdi_device *ddev = span->parent;
struct wctdm *wc = NULL;
list_for_each_entry(s, &ddev->spans, device_node) {
wc = (container_of(s, struct wctdm_span, span))->wc;
if (!test_bit(DAHDI_FLAGBIT_REGISTERED, &s->flags))
return;
}
if (wc) {
WARN_ON(0 == wc->not_ready);
--wc->not_ready;
}
}
static const struct dahdi_span_ops wctdm24xxp_analog_span_ops = {
.owner = THIS_MODULE,
.hooksig = wctdm_hooksig,
.open = wctdm_open,
.close = wctdm_close,
.ioctl = wctdm_ioctl,
.watchdog = wctdm_watchdog,
.chanconfig = wctdm_chanconfig,
.dacs = wctdm_dacs,
.assigned = wctdm24xxp_assigned,
#ifdef VPM_SUPPORT
.enable_hw_preechocan = wctdm_enable_hw_preechocan,
.disable_hw_preechocan = wctdm_disable_hw_preechocan,
.echocan_create = wctdm_echocan_create,
.echocan_name = wctdm_echocan_name,
#endif
};
static const struct dahdi_span_ops wctdm24xxp_digital_span_ops = {
.owner = THIS_MODULE,
.open = wctdm_open,
.close = wctdm_close,
.ioctl = wctdm_ioctl,
.watchdog = wctdm_watchdog,
.hdlc_hard_xmit = wctdm_hdlc_hard_xmit,
.spanconfig = b400m_spanconfig,
.chanconfig = b400m_chanconfig,
.dacs = wctdm_dacs,
.assigned = wctdm24xxp_assigned,
#ifdef VPM_SUPPORT
.enable_hw_preechocan = wctdm_enable_hw_preechocan,
.disable_hw_preechocan = wctdm_disable_hw_preechocan,
.echocan_create = wctdm_echocan_create,
.echocan_name = wctdm_echocan_name,
#endif
};
static struct wctdm_chan *
wctdm_init_chan(struct wctdm *wc, struct wctdm_span *s, int chanoffset,
int channo, unsigned int card_position)
{
struct wctdm_chan *c;
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
return NULL;
/* Do not change the procfs representation for non-hx8 cards. */
if (dahdi_is_digital_span(&s->span)) {
sprintf(c->chan.name, "WCBRI/%d/%d/%d", card_position,
s->spanno, channo);
} else {
sprintf(c->chan.name, "WCTDM/%d/%d", card_position, channo);
}
c->chan.chanpos = channo+1;
c->chan.span = &s->span;
c->chan.pvt = wc;
c->timeslot = chanoffset + channo;
return c;
}
#if 0
/**
* wctdm_span_count() - Return the number of spans exported by this board.
*
* This is only called during initialization so let's just count the spans each
* time we need this information as opposed to storing another variable in the
* wctdm structure.
*/
static int wctdm_span_count(const struct wctdm *wc)
{
int i;
int count = 0;
for (i = 0; i < MAX_SPANS; ++i) {
if (wc->spans[i])
++count;
}
return count;
}
#endif
static struct wctdm_span *
wctdm_init_span(struct wctdm *wc, int spanno, int chanoffset, int chancount,
int digital_span, unsigned int card_position)
{
int x;
struct wctdm_chan *c;
struct wctdm_span *s;
static int spancount;
s = kzalloc(sizeof(*s), GFP_KERNEL);
if (!s)
return NULL;
/* DAHDI stuff */
s->span.offset = spanno;
s->spanno = spancount++;
s->wc = wc;
/* Do not change the procfs representation for non-hx8 cards. */
if (digital_span)
sprintf(s->span.name, "WCBRI/%d/%d", card_position, s->spanno);
else
sprintf(s->span.name, "WCTDM/%d", card_position);
snprintf(s->span.desc, sizeof(s->span.desc) - 1, "%s", wc->desc->name);
if (wc->companding == DAHDI_LAW_DEFAULT) {
if (wc->digi_mods || digital_span)
/* If we have a BRI module, Auto set to alaw */
s->span.deflaw = DAHDI_LAW_ALAW;
else
/* Auto set to ulaw */
s->span.deflaw = DAHDI_LAW_MULAW;
} else if (wc->companding == DAHDI_LAW_ALAW) {
/* Force everything to alaw */
s->span.deflaw = DAHDI_LAW_ALAW;
} else {
/* Auto set to ulaw */
s->span.deflaw = DAHDI_LAW_MULAW;
}
if (digital_span) {
s->span.ops = &wctdm24xxp_digital_span_ops;
s->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_B8ZS | DAHDI_CONFIG_D4;
s->span.linecompat |= DAHDI_CONFIG_ESF | DAHDI_CONFIG_HDB3 | DAHDI_CONFIG_CCS | DAHDI_CONFIG_CRC4;
s->span.linecompat |= DAHDI_CONFIG_NTTE | DAHDI_CONFIG_TERM;
s->span.spantype = "TE";
} else {
s->span.ops = &wctdm24xxp_analog_span_ops;
s->span.flags = DAHDI_FLAG_RBS;
/* analog sigcap handled in fixup_analog_span() */
}
s->span.chans = kmalloc(sizeof(struct dahdi_chan *) * chancount, GFP_KERNEL);
if (!s->span.chans)
return NULL;
/* allocate channels for the span */
for (x = 0; x < chancount; x++) {
c = wctdm_init_chan(wc, s, chanoffset, x, card_position);
if (!c)
return NULL;
wc->chans[chanoffset + x] = c;
s->span.chans[x] = &c->chan;
}
s->span.channels = chancount;
if (digital_span) {
wc->chans[chanoffset + 0]->chan.sigcap = DAHDI_SIG_CLEAR;
wc->chans[chanoffset + 1]->chan.sigcap = DAHDI_SIG_CLEAR;
wc->chans[chanoffset + 2]->chan.sigcap = DAHDI_SIG_HARDHDLC;
}
wc->spans[spanno] = s;
return s;
}
/**
* should_set_alaw() - Should be called after all the spans are initialized.
*
* Returns true if the module companding should be set to alaw, otherwise
* false.
*/
static bool should_set_alaw(const struct wctdm *wc)
{
if (DAHDI_LAW_DEFAULT == wc->companding)
return (wc->digi_mods > 0);
else if (DAHDI_LAW_ALAW == wc->companding)
return true;
else
return false;
}
static void wctdm_fixup_analog_span(struct wctdm *wc, int spanno)
{
struct dahdi_span *s;
int x, y;
/* Finalize signalling */
y = 0;
s = &wc->spans[spanno]->span;
for (x = 0; x < wc->desc->ports; x++) {
struct wctdm_module *const mod = &wc->mods[x];
if (debug) {
dev_info(&wc->vb.pdev->dev,
"fixup_analog: x=%d, y=%d modtype=%d, "
"s->chans[%d]=%p\n", x, y, mod->type,
y, s->chans[y]);
}
if (mod->type == FXO) {
int val;
s->chans[y++]->sigcap = DAHDI_SIG_FXSKS | DAHDI_SIG_FXSLS | DAHDI_SIG_SF | DAHDI_SIG_CLEAR;
val = should_set_alaw(wc) ? 0x20 : 0x28;
#ifdef DEBUG
val = (digitalloopback) ? 0x30 : val;
#endif
wctdm_setreg(wc, mod, 33, val);
} else if (mod->type == FXS) {
s->chans[y++]->sigcap = DAHDI_SIG_FXOKS | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR;
wctdm_setreg(wc, mod, 1,
(should_set_alaw(wc) ? 0x20 : 0x28));
} else if (mod->type == QRV) {
s->chans[y++]->sigcap = DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR;
} else {
s->chans[y++]->sigcap = 0;
}
}
}
static int wctdm_initialize_vpmadt032(struct wctdm *wc)
{
int res;
struct vpmadt032_options options;
struct vpmadt032 *vpm;
unsigned long flags;
options.debug = debug;
options.vpmnlptype = vpmnlptype;
options.vpmnlpthresh = vpmnlpthresh;
options.vpmnlpmaxsupp = vpmnlpmaxsupp;
if (is_hx8(wc)) {
/* Hybrid cards potentially have 3 channels of EC on their
* ports since they may be BRI spans. */
options.channels = 3 * wc->desc->ports;
} else {
options.channels = wc->desc->ports;
}
BUG_ON(options.channels > 24);
wc->vpmadt032 = vpmadt032_alloc(&options);
if (!wc->vpmadt032)
return -ENOMEM;
wc->vpmadt032->setchanconfig_from_state = setchanconfig_from_state;
/* Pull the configuration information from the span holding
* the analog channels. */
res = vpmadt032_test(wc->vpmadt032, &wc->vb);
if (!res)
res = vpmadt032_init(wc->vpmadt032);
if (res) {
vpm = wc->vpmadt032;
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmadt032 = NULL;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmadt032_free(vpm);
return res;
}
/* Now we need to configure the VPMADT032 module for this
* particular board. */
res = config_vpmadt032(wc->vpmadt032, wc);
if (res) {
vpm = wc->vpmadt032;
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmadt032 = NULL;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmadt032_free(vpm);
return res;
}
return 0;
}
static void wctdm_vpm_load_complete(struct device *dev, bool operational)
{
unsigned long flags;
struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
struct wctdm *wc = pci_get_drvdata(pdev);
struct vpmoct *vpm = NULL;
WARN_ON(!wc || !wc->not_ready);
if (!wc || !wc->not_ready)
return;
spin_lock_irqsave(&wc->reglock, flags);
wc->not_ready--;
if (operational) {
wc->ctlreg |= 0x10;
} else {
vpm = wc->vpmoct;
wc->vpmoct = NULL;
}
spin_unlock_irqrestore(&wc->reglock, flags);
if (vpm)
vpmoct_free(vpm);
}
static int wctdm_initialize_vpm(struct wctdm *wc, unsigned long unused)
{
int res = 0;
if (!vpmsupport) {
dev_notice(&wc->vb.pdev->dev, "VPM: Support Disabled\n");
return 0;
}
res = wctdm_initialize_vpmadt032(wc);
if (!res) {
wc->ctlreg |= 0x10;
return 0;
} else {
struct vpmoct *vpm;
unsigned long flags;
vpm = vpmoct_alloc();
if (!vpm) {
dev_info(&wc->vb.pdev->dev,
"Unable to allocate memory for struct vpmoct\n");
return -ENOMEM;
}
vpm->dev = &wc->vb.pdev->dev;
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmoct = vpm;
wc->not_ready++;
spin_unlock_irqrestore(&wc->reglock, flags);
res = vpmoct_init(vpm, wctdm_vpm_load_complete);
if (-EINVAL == res) {
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmoct = NULL;
wc->not_ready--;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmoct_free(vpm);
}
}
return 0;
}
static int __wctdm_identify_module_group(struct wctdm *wc, unsigned long base)
{
int x;
unsigned long flags;
for (x = base; x < base + 4; ++x) {
struct wctdm_module *const mod = &wc->mods[x];
enum {SANE = 1, UNKNOWN = 0};
int ret = 0, readi = 0;
bool altcs = false;
if (fatal_signal_pending(current))
break;
retry:
ret = wctdm_init_proslic(wc, mod, 0, 0, UNKNOWN);
if (!ret) {
if (debug & DEBUG_CARD) {
readi = wctdm_getreg(wc, mod, LOOP_I_LIMIT);
dev_info(&wc->vb.pdev->dev,
"Proslic module %d loop current "
"is %dmA\n", x, ((readi*3) + 20));
}
continue;
}
if (ret != -2) {
/* Init with Manual Calibration */
if (!wctdm_init_proslic(wc, mod, 0, 1, SANE)) {
if (debug & DEBUG_CARD) {
readi = wctdm_getreg(wc, mod,
LOOP_I_LIMIT);
dev_info(&wc->vb.pdev->dev,
"Proslic module %d loop "
"current is %dmA\n", x,
((readi*3)+20));
}
} else {
dev_notice(&wc->vb.pdev->dev,
"Port %d: FAILED FXS (%s)\n",
x + 1, fxshonormode ?
fxo_modes[_opermode].name : "FCC");
}
continue;
}
ret = wctdm_init_voicedaa(wc, mod, 0, 0, UNKNOWN);
if (!ret)
continue;
if (!wctdm_init_qrvdri(wc, x))
continue;
if (is_hx8(wc) && !wctdm_init_b400m(wc, x))
continue;
if ((wc->desc->ports != 24) && ((x&0x3) == 1) && !altcs) {
spin_lock_irqsave(&wc->reglock, flags);
set_offsets(mod, 2);
altcs = true;
if (wc->desc->ports == 4) {
set_offsets(&wc->mods[x+1], 3);
set_offsets(&wc->mods[x+2], 3);
}
mod->type = FXSINIT;
spin_unlock_irqrestore(&wc->reglock, flags);
udelay(1000);
udelay(1000);
spin_lock_irqsave(&wc->reglock, flags);
mod->type = FXS;
spin_unlock_irqrestore(&wc->reglock, flags);
if (debug & DEBUG_CARD) {
dev_info(&wc->vb.pdev->dev,
"Trying port %d with alternate chip "
"select\n", x + 1);
}
goto retry;
}
mod->type = NONE;
}
return 0;
}
/**
* wctdm_print_moule_configuration - Print the configuration to the kernel log
* @wc: The card we're interested in.
*
* This is to ensure that the module configuration from each card shows up
* sequentially in the kernel log, as opposed to interleaved with one another.
*
*/
static void wctdm_print_module_configuration(const struct wctdm *const wc)
{
int i;
static DEFINE_MUTEX(print);
mutex_lock(&print);
for (i = 0; i < wc->mods_per_board; ++i) {
const struct wctdm_module *const mod = &wc->mods[i];
switch (mod->type) {
case FXO:
dev_info(&wc->vb.pdev->dev, "Port %d: Installed -- "
"AUTO FXO (%s mode)\n", i + 1,
fxo_modes[_opermode].name);
break;
case FXS:
dev_info(&wc->vb.pdev->dev,
"Port %d: Installed -- AUTO FXS/DPO\n", i + 1);
break;
case BRI:
dev_info(&wc->vb.pdev->dev, "Port %d: Installed -- BRI "
"quad-span module\n", i + 1);
break;
case QRV:
dev_info(&wc->vb.pdev->dev,
"Port %d: Installed -- QRV DRI card\n", i + 1);
break;
case NONE:
dev_info(&wc->vb.pdev->dev,
"Port %d: Not installed\n", i + 1);
break;
case FXSINIT:
break;
}
}
mutex_unlock(&print);
}
static void wctdm_identify_modules(struct wctdm *wc)
{
int x;
unsigned long flags;
struct bg *bg_work[ARRAY_SIZE(wc->mods)/4 + 1] = {NULL, };
wc->ctlreg = 0x00;
/*
* This looks a little weird.
*
* There are only 8 physical ports on the TDM/AEX800, but the code
* immediately below sets 24 modules up. This has to do with the
* altcs magic that allows us to have single-port and quad-port
* modules on these products. The variable "mods_per_board" is set to
* the appropriate value just below the next code block.
*
* Now why this is important: The FXS modules come out of reset in a
* two-byte, non-chainable SPI mode. This is currently incompatible
* with how we do things, so we need to set them to a chained, 3-byte
* command mode. This is done by setting the module type to FXSINIT
* for a little while so that cmd_dequeue will initialize the SLIC
* into the appropriate mode.
*
* This "go to 3-byte chained mode" command, however, wreaks havoc
* with HybridBRI.
*
* The solution: Since HybridBRI is only designed to work in an 8-port
* card, and since the single-port modules "show up" in SPI slots >= 8
* in these cards, we only set SPI slots 8-23 to FXSINIT. The
* HybridBRI will never see the command that causes it to freak out
* and the single-port FXS cards get what they need so that when we
* probe with altcs we see them.
*/
/* Make sure all units go into daisy chain mode */
spin_lock_irqsave(&wc->reglock, flags);
for (x = 0; x < ARRAY_SIZE(wc->mods); x++)
wc->mods[x].type = FXSINIT;
spin_unlock_irqrestore(&wc->reglock, flags);
/* Wait just a bit; this makes sure that cmd_dequeue is emitting SPI
* commands in the appropriate mode(s). */
msleep(20);
/* Now that all the cards have been reset, we can stop checking them
* all if there aren't as many */
spin_lock_irqsave(&wc->reglock, flags);
wc->mods_per_board = wc->desc->ports;
spin_unlock_irqrestore(&wc->reglock, flags);
BUG_ON(wc->desc->ports % 4);
/* Detecting and configuring the modules over voicebus takes a
* significant amount of time. We can speed things up by performing
* this in parallel for each group of four modules. */
for (x = 0; x < wc->desc->ports/4; x++)
bg_work[x] = bg_create(wc, __wctdm_identify_module_group, x*4);
for (x = 0; bg_work[x]; ++x)
bg_join(bg_work[x]);
wctdm_print_module_configuration(wc);
}
static struct pci_driver wctdm_driver;
static void wctdm_back_out_gracefully(struct wctdm *wc)
{
int i;
unsigned long flags;
struct vpmadt032 *vpm;
LIST_HEAD(local_list);
spin_lock_irqsave(&wc->reglock, flags);
if (wc->not_ready) {
wc->not_ready--;
spin_unlock_irqrestore(&wc->reglock, flags);
while (wctdm_wait_for_ready(wc))
schedule();
spin_lock_irqsave(&wc->reglock, flags);
}
spin_unlock_irqrestore(&wc->reglock, flags);
if (wc->vpmadt032) {
flush_workqueue(wc->vpmadt032->wq);
clear_bit(VPM150M_ACTIVE, &wc->vpmadt032->control);
flush_workqueue(wc->vpmadt032->wq);
spin_lock_irqsave(&wc->reglock, flags);
vpm = wc->vpmadt032;
wc->vpmadt032 = NULL;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmadt032_free(vpm);
}
voicebus_release(&wc->vb);
#ifdef CONFIG_VOICEBUS_ECREFERENCE
for (i = 0; i < ARRAY_SIZE(wc->ec_reference); ++i) {
if (wc->ec_reference[i])
dahdi_fifo_free(wc->ec_reference[i]);
}
#endif
for (i = 0; i < ARRAY_SIZE(wc->spans); ++i) {
if (wc->spans[i] && wc->spans[i]->span.chans)
kfree(wc->spans[i]->span.chans);
kfree(wc->spans[i]);
wc->spans[i] = NULL;
}
spin_lock_irqsave(&wc->reglock, flags);
for (i = 0; i < ARRAY_SIZE(wc->mods); ++i) {
struct wctdm_module *const mod = &wc->mods[i];
kfree(wc->chans[i]);
wc->chans[i] = NULL;
list_splice_init(&mod->pending_cmds, &local_list);
list_splice_init(&mod->active_cmds, &local_list);
}
list_splice_init(&wc->free_isr_commands, &local_list);
spin_unlock_irqrestore(&wc->reglock, flags);
while (!list_empty(&local_list)) {
struct wctdm_cmd *cmd;
cmd = list_entry(local_list.next,
struct wctdm_cmd, node);
list_del(&cmd->node);
kfree(cmd->complete);
kfree(cmd);
}
spin_lock_irqsave(&wc->frame_list_lock, flags);
list_splice(&wc->frame_list, &local_list);
spin_unlock_irqrestore(&wc->frame_list_lock, flags);
while (!list_empty(&local_list)) {
struct sframe_packet *frame;
frame = list_entry(local_list.next,
struct sframe_packet, node);
list_del(&frame->node);
kfree(frame);
}
kfree(wc->board_name);
kfree(wc->ddev->devicetype);
kfree(wc->ddev->location);
dahdi_free_device(wc->ddev);
kfree(wc);
}
static const struct voicebus_operations voicebus_operations = {
.handle_receive = handle_receive,
.handle_transmit = handle_transmit,
};
static const struct voicebus_operations hx8_voicebus_operations = {
.handle_receive = handle_hx8_receive,
.handle_transmit = handle_hx8_transmit,
};
struct cmd_results {
u8 results[8];
};
static int hx8_send_command(struct wctdm *wc, const u8 *command,
size_t count, int checksum,
int application, int bootloader,
struct cmd_results *results)
{
int ret = 0;
struct vbb *vbb;
struct sframe_packet *frame;
const int MAX_COMMAND_LENGTH = 264 + 4;
unsigned long flags;
dma_addr_t dma_addr;
might_sleep();
/* can't boot both into the application and the bootloader at once. */
WARN_ON((application > 0) && (bootloader > 0));
if ((application > 0) && (bootloader > 0))
return -EINVAL;
WARN_ON(count > MAX_COMMAND_LENGTH);
if (count > MAX_COMMAND_LENGTH)
return -EINVAL;
vbb = dma_pool_alloc(wc->vb.pool, GFP_KERNEL, &dma_addr);
WARN_ON(!vbb);
if (!vbb)
return -ENOMEM;
vbb->dma_addr = dma_addr;
memset(vbb->data, 0, SFRAME_SIZE);
memcpy(&vbb->data[EFRAME_SIZE + EFRAME_GAP], command, count);
vbb->data[EFRAME_SIZE] = 0x80 | ((application) ? 0 : 0x40) |
((checksum) ? 0x20 : 0) | ((count & 0x100) >> 4);
vbb->data[EFRAME_SIZE + 1] = count & 0xff;
if (bootloader)
vbb->data[EFRAME_SIZE + 3] = 0xAA;
spin_lock_irqsave(&wc->vb.lock, flags);
voicebus_transmit(&wc->vb, vbb);
spin_unlock_irqrestore(&wc->vb.lock, flags);
/* Do not wait for the response if the caller doesn't care about the
* results. */
if (NULL == results)
return 0;
if (!wait_event_timeout(wc->regq, !list_empty(&wc->frame_list), 2*HZ)) {
dev_err(&wc->vb.pdev->dev, "Timeout waiting "
"for receive frame.\n");
ret = -EIO;
}
/* We only want the last packet received. Throw away anything else on
* the list */
frame = NULL;
spin_lock_irqsave(&wc->frame_list_lock, flags);
while (!list_empty(&wc->frame_list)) {
frame = list_entry(wc->frame_list.next,
struct sframe_packet, node);
list_del(&frame->node);
if (!list_empty(&wc->frame_list)) {
kfree(frame);
frame = NULL;
}
}
spin_unlock_irqrestore(&wc->frame_list_lock, flags);
if (frame) {
memcpy(results->results, &frame->sframe[EFRAME_SIZE],
sizeof(results->results));
} else {
ret = -EIO;
}
return ret;
}
static int hx8_get_fpga_version(struct wctdm *wc, u8 *major, u8 *minor)
{
int ret;
struct cmd_results results;
u8 command[] = {0xD7, 0x00};
ret = hx8_send_command(wc, command, ARRAY_SIZE(command),
0, 0, 0, &results);
if (ret)
return ret;
*major = results.results[0];
*minor = results.results[2];
return 0;
}
static void hx8_cleanup_frame_list(struct wctdm *wc)
{
unsigned long flags;
LIST_HEAD(local_list);
struct sframe_packet *frame;
spin_lock_irqsave(&wc->frame_list_lock, flags);
list_splice_init(&wc->frame_list, &local_list);
spin_unlock_irqrestore(&wc->frame_list_lock, flags);
while (!list_empty(&local_list)) {
frame = list_entry(local_list.next, struct sframe_packet, node);
list_del(&frame->node);
kfree(frame);
}
}
static int hx8_switch_to_application(struct wctdm *wc)
{
int ret;
u8 command[] = {0xD7, 0x00};
ret = hx8_send_command(wc, command, ARRAY_SIZE(command),
0, 1, 0, NULL);
if (ret)
return ret;
msleep(1000);
hx8_cleanup_frame_list(wc);
return 0;
}
/**
* hx8_switch_to_bootloader() - Send packet to switch hx8 into bootloader
*
*/
static int hx8_switch_to_bootloader(struct wctdm *wc)
{
int ret;
u8 command[] = {0xD7, 0x00};
ret = hx8_send_command(wc, command, ARRAY_SIZE(command),
0, 0, 1, NULL);
if (ret)
return ret;
/* It takes some time for the FPGA to reload and switch it's
* configuration. */
msleep(300);
hx8_cleanup_frame_list(wc);
return 0;
}
struct ha80000_firmware {
u8 header[6];
u8 major_ver;
u8 minor_ver;
u8 data[54648];
__le32 chksum;
} __attribute__((packed));
static void hx8_send_dummy(struct wctdm *wc)
{
u8 command[] = {0xD7, 0x00};
hx8_send_command(wc, command, ARRAY_SIZE(command),
0, 0, 0, NULL);
}
static int hx8_read_status_register(struct wctdm *wc, u8 *status)
{
int ret;
struct cmd_results results;
u8 command[] = {0xD7, 0x00};
ret = hx8_send_command(wc, command, ARRAY_SIZE(command),
0, 0, 0, &results);
if (ret)
return ret;
*status = results.results[3];
return 0;
}
static const unsigned int HYBRID_PAGE_SIZE = 264;
static int hx8_write_buffer(struct wctdm *wc, const u8 *buffer, size_t size)
{
int ret = 0;
struct cmd_results results;
int padding_bytes = 0;
u8 *local_data;
u8 command[] = {0x84, 0, 0, 0};
if (size > HYBRID_PAGE_SIZE)
return -EINVAL;
if (size < HYBRID_PAGE_SIZE)
padding_bytes = HYBRID_PAGE_SIZE - size;
local_data = kmalloc(sizeof(command) + size + padding_bytes, GFP_KERNEL);
if (!local_data)
return -ENOMEM;
memcpy(local_data, command, sizeof(command));
memcpy(&local_data[sizeof(command)], buffer, size);
memset(&local_data[sizeof(command) + size], 0xff, padding_bytes);
ret = hx8_send_command(wc, local_data,
sizeof(command) + size + padding_bytes,
1, 0, 0, &results);
if (ret)
goto cleanup;
cleanup:
kfree(local_data);
return ret;
}
static int hx8_buffer_to_page(struct wctdm *wc, const unsigned int page)
{
int ret;
struct cmd_results results;
u8 command[] = {0x83, (page & 0x180) >> 7, (page & 0x7f) << 1, 0x00};
ret = hx8_send_command(wc, command, sizeof(command),
1, 0, 0, &results);
if (ret)
return ret;
return 0;
}
static int hx8_wait_for_ready(struct wctdm *wc, const int timeout)
{
int ret;
u8 status;
unsigned long local_timeout = jiffies + timeout;
do {
ret = hx8_read_status_register(wc, &status);
if (ret)
return ret;
if ((status & 0x80) > 0)
break;
} while (time_after(local_timeout, jiffies));
if (time_after(jiffies, local_timeout))
return -EIO;
return 0;
}
/**
* hx8_reload_application - reload the application firmware
*
* NOTE: The caller should ensure that the board is in bootloader mode before
* calling this function.
*/
static int hx8_reload_application(struct wctdm *wc, const struct ha80000_firmware *ha8_fw)
{
unsigned int cur_page;
const u8 *data;
u8 status;
int ret = 0;
const int HYBRID_PAGE_COUNT = (sizeof(ha8_fw->data)) / HYBRID_PAGE_SIZE;
dev_info(&wc->vb.pdev->dev, "Reloading firmware. Do not power down "
"the system until the process is complete.\n");
BUG_ON(!ha8_fw);
might_sleep();
data = &ha8_fw->data[0];
ret = hx8_read_status_register(wc, &status);
if (ret)
return ret;
for (cur_page = 0; cur_page < HYBRID_PAGE_COUNT; ++cur_page) {
ret = hx8_write_buffer(wc, data, HYBRID_PAGE_SIZE);
if (ret)
return ret;
/* The application starts out at page 0x100 */
ret = hx8_buffer_to_page(wc, 0x100 + cur_page);
if (ret)
return ret;
/* wait no more than a second for the write to the page to
* finish */
ret = hx8_wait_for_ready(wc, HZ);
if (ret)
return ret;
data += HYBRID_PAGE_SIZE;
}
return ret;
}
static void print_hx8_recovery_message(struct device *dev)
{
dev_warn(dev, "The firmware may be corrupted. Please completely "
"power off your system, power on, and then reload the driver "
"with the 'forceload' module parameter set to 1 to attempt "
"recovery.\n");
}
/**
* hx8_check_firmware - Check the firmware version and load a new one possibly.
*
*/
static int hx8_check_firmware(struct wctdm *wc)
{
int ret;
u8 major;
u8 minor;
const struct firmware *fw;
const struct ha80000_firmware *ha8_fw;
struct device *dev = &wc->vb.pdev->dev;
int retries = 10;
BUG_ON(!is_hx8(wc));
might_sleep();
do {
hx8_send_dummy(wc);
ret = hx8_get_fpga_version(wc, &major, &minor);
if (!ret)
break;
if (fatal_signal_pending(current))
return -EINTR;
} while (--retries);
if (ret) {
print_hx8_recovery_message(dev);
return ret;
}
/* If we're in the bootloader, try to jump into the application. */
if ((1 == major) && (0x80 == minor) && !forceload) {
dev_dbg(dev, "Switching to application.\n");
hx8_switch_to_application(wc);
ret = hx8_get_fpga_version(wc, &major, &minor);
if (ret) {
print_hx8_recovery_message(dev);
return ret;
}
}
dev_dbg(dev, "FPGA VERSION: %02x.%02x\n", major, minor);
ret = request_firmware(&fw, "dahdi-fw-hx8.bin", dev);
if (ret) {
dev_warn(dev, "Failed to load firmware from userspace, skipping "
"check. (%d)\n", ret);
return 0;
}
ha8_fw = (const struct ha80000_firmware *)fw->data;
if ((fw->size != sizeof(*ha8_fw)) ||
(0 != memcmp("DIGIUM", ha8_fw->header, sizeof(ha8_fw->header))) ||
((crc32(~0, (void *)ha8_fw, sizeof(*ha8_fw) - sizeof(u32)) ^ ~0) !=
le32_to_cpu(ha8_fw->chksum))) {
dev_warn(dev, "Firmware file is invalid. Skipping load.\n");
ret = 0;
goto cleanup;
}
dev_dbg(dev, "FIRMWARE: %02x.%02x\n", ha8_fw->major_ver, ha8_fw->minor_ver);
if (ha8_fw->major_ver == major &&
ha8_fw->minor_ver == minor) {
dev_dbg(dev, "Firmware versions match, skipping load.\n");
ret = 0;
goto cleanup;
}
if (2 == major) {
hx8_switch_to_bootloader(wc);
ret = hx8_get_fpga_version(wc, &major, &minor);
if (ret)
goto cleanup;
}
/* so now we're in boot loader mode, ready to load the new firmware. */
ret = hx8_reload_application(wc, ha8_fw);
if (ret)
goto cleanup;
dev_dbg(dev, "Firmware reloaded. Booting into application.\n");
hx8_switch_to_application(wc);
ret = hx8_get_fpga_version(wc, &major, &minor);
if (ret)
goto cleanup;
dev_dbg(dev, "FPGA VERSION AFTER LOAD: %02x.%02x\n", major, minor);
if (forceload) {
dev_warn(dev, "Please unset forceload if your card is able to "
"detect the installed modules.\n");
}
cleanup:
release_firmware(fw);
dev_info(dev, "Hx8 firmware version: %d.%02d\n", major, minor);
return ret;
}
#ifdef CONFIG_VOICEBUS_SYSFS
static ssize_t
voicebus_current_latency_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long flags;
struct wctdm *wc = dev_get_drvdata(dev);
unsigned int current_latency;
spin_lock_irqsave(&wc->vb.lock, flags);
current_latency = wc->vb.min_tx_buffer_count;
spin_unlock_irqrestore(&wc->vb.lock, flags);
return sprintf(buf, "%d\n", current_latency);
}
static DEVICE_ATTR(voicebus_current_latency, 0400,
voicebus_current_latency_show, NULL);
static ssize_t vpm_firmware_version_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int res;
u16 version = 0;
struct wctdm *wc = dev_get_drvdata(dev);
if (wc->vpmadt032) {
res = gpakPingDsp(wc->vpmadt032->dspid, &version);
if (res) {
dev_info(&wc->vb.pdev->dev, "Failed gpakPingDsp %d\n", res);
version = -1;
}
}
return sprintf(buf, "%x.%02x\n", (version & 0xff00) >> 8, (version & 0xff));
}
static DEVICE_ATTR(vpm_firmware_version, 0400,
vpm_firmware_version_show, NULL);
static ssize_t
enable_vpm_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long flags;
struct wctdm *wc = dev_get_drvdata(dev);
unsigned int enable_vpm;
spin_lock_irqsave(&wc->reglock, flags);
enable_vpm = (wc->ctlreg & 0x10) != 0;
spin_unlock_irqrestore(&wc->reglock, flags);
return sprintf(buf, "%d\n", enable_vpm);
}
static ssize_t
enable_vpm_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long flags;
struct wctdm *wc = dev_get_drvdata(dev);
unsigned int enable_vpm;
if (count < 2)
return -EINVAL;
if (('0' == buf[0]) || (0 == buf[0]))
enable_vpm = 0;
else
enable_vpm = 1;
spin_lock_irqsave(&wc->reglock, flags);
if (enable_vpm)
wc->ctlreg |= 0x10;
else
wc->ctlreg &= ~0x10;
spin_unlock_irqrestore(&wc->reglock, flags);
return count;
}
static DEVICE_ATTR(enable_vpm, 0644,
enable_vpm_show, enable_vpm_store);
static void create_sysfs_files(struct wctdm *wc)
{
int ret;
ret = device_create_file(&wc->vb.pdev->dev,
&dev_attr_voicebus_current_latency);
if (ret) {
dev_info(&wc->vb.pdev->dev,
"Failed to create device attributes.\n");
}
ret = device_create_file(&wc->vb.pdev->dev,
&dev_attr_vpm_firmware_version);
if (ret) {
dev_info(&wc->vb.pdev->dev,
"Failed to create device attributes.\n");
}
ret = device_create_file(&wc->vb.pdev->dev,
&dev_attr_enable_vpm);
if (ret) {
dev_info(&wc->vb.pdev->dev,
"Failed to create device attributes.\n");
}
}
static void remove_sysfs_files(struct wctdm *wc)
{
device_remove_file(&wc->vb.pdev->dev,
&dev_attr_enable_vpm);
device_remove_file(&wc->vb.pdev->dev,
&dev_attr_vpm_firmware_version);
device_remove_file(&wc->vb.pdev->dev,
&dev_attr_voicebus_current_latency);
}
#else
static inline void create_sysfs_files(struct wctdm *wc) { return; }
static inline void remove_sysfs_files(struct wctdm *wc) { return; }
#endif /* CONFIG_VOICEBUS_SYSFS */
static void wctdm_set_tdm410_leds(struct wctdm *wc)
{
int i;
if (4 != wc->desc->ports)
return;
wc->tdm410leds = 0; /* all on by default */
for (i = 0; i < wc->desc->ports; ++i) {
/* Turn off the LED for any module that isn't installed. */
if (NONE == wc->mods[i].type)
wc->tdm410leds |= (1 << i);
}
}
/**
* wctdm_allocate_irq_commands - Preallocate some commands for use in interrupt context.
* @wc: The board which we're allocating for.
* @count: The number of IRQ commands to allocate.
*
* We need a minimum of 4 * the current latency worth of commands for each
* analog module. When the latency grows, new commands will be allocated, but
* this just represents are best guess as to the number of commands we'll need
* after probing for modules, and reduces the chance that we'll allocate
* memory in interrupt context when the driver first loads.
*
*/
static void wctdm_allocate_irq_commands(struct wctdm *wc, unsigned int count)
{
unsigned long flags;
LIST_HEAD(local_list);
if (!count)
return;
while (count--) {
struct wctdm_cmd *cmd;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
break;
list_add(&cmd->node, &local_list);
}
spin_lock_irqsave(&wc->reglock, flags);
list_splice(&local_list, &wc->free_isr_commands);
spin_unlock_irqrestore(&wc->reglock, flags);
}
#ifdef USE_ASYNC_INIT
struct async_data {
struct pci_dev *pdev;
const struct pci_device_id *ent;
};
static int __devinit
__wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent,
async_cookie_t cookie)
#else
static int __devinit
__wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
#endif
{
struct wctdm *wc;
unsigned int pos;
int i, ret;
struct bg *vpm_work;
int anamods, digimods, curchan, curspan;
neonmwi_offlimit_cycles = neonmwi_offlimit / MS_PER_HOOKCHECK;
wc = kzalloc(sizeof(*wc), GFP_KERNEL);
if (!wc)
return -ENOMEM;
wc->not_ready = 1;
down(&ifacelock);
/* \todo this is a candidate for removal... */
for (pos = 0; pos < WC_MAX_IFACES; ++pos) {
if (!ifaces[pos]) {
ifaces[pos] = wc;
break;
}
}
up(&ifacelock);
wc->desc = (struct wctdm_desc *)ent->driver_data;
/* This is to insure that the analog span is given lowest priority */
sema_init(&wc->syncsem, 1);
INIT_LIST_HEAD(&wc->frame_list);
spin_lock_init(&wc->frame_list_lock);
init_waitqueue_head(&wc->regq);
spin_lock_init(&wc->reglock);
INIT_LIST_HEAD(&wc->free_isr_commands);
wc->oldsync = -1;
wc->board_name = kasprintf(GFP_KERNEL, "%s%d", wctdm_driver.name, pos);
if (!wc->board_name) {
wctdm_back_out_gracefully(wc);
return -ENOMEM;
}
#ifdef CONFIG_VOICEBUS_ECREFERENCE
for (i = 0; i < ARRAY_SIZE(wc->ec_reference); ++i) {
/* 256 is the smallest power of 2 that will contains the
* maximum possible amount of latency. */
wc->ec_reference[i] = dahdi_fifo_alloc(256, GFP_KERNEL);
if (IS_ERR(wc->ec_reference[i])) {
ret = PTR_ERR(wc->ec_reference[i]);
wc->ec_reference[i] = NULL;
wctdm_back_out_gracefully(wc);
return ret;
}
}
#endif
pci_set_drvdata(pdev, wc);
wc->vb.ops = &voicebus_operations;
wc->vb.pdev = pdev;
wc->vb.debug = &debug;
if (is_hx8(wc)) {
wc->vb.ops = &hx8_voicebus_operations;
ret = voicebus_boot_init(&wc->vb, wc->board_name);
} else {
wc->vb.ops = &voicebus_operations;
ret = voicebus_init(&wc->vb, wc->board_name);
voicebus_set_minlatency(&wc->vb, latency);
voicebus_set_maxlatency(&wc->vb, max_latency);
}
if (ret) {
wctdm_back_out_gracefully(wc);
return ret;
}
create_sysfs_files(wc);
voicebus_lock_latency(&wc->vb);
wc->mods_per_board = NUM_MODULES;
wc->txident = 1;
if (alawoverride) {
companding = "alaw";
dev_info(&wc->vb.pdev->dev, "The module parameter alawoverride"\
" has been deprecated. Please use the "\
"parameter companding=alaw instead");
}
if (!strcasecmp(companding, "alaw"))
/* Force this card's companding to alaw */
wc->companding = DAHDI_LAW_ALAW;
else if (!strcasecmp(companding, "ulaw"))
/* Force this card's companding to ulaw */
wc->companding = DAHDI_LAW_MULAW;
else
/* Auto detect this card's companding */
wc->companding = DAHDI_LAW_DEFAULT;
for (i = 0; i < ARRAY_SIZE(wc->mods); i++) {
struct wctdm_module *const mod = &wc->mods[i];
INIT_LIST_HEAD(&mod->pending_cmds);
INIT_LIST_HEAD(&mod->active_cmds);
mod->dacssrc = -1;
mod->card = i;
set_offsets(mod, 0);
}
/* Start the hardware processing. */
if (voicebus_start(&wc->vb)) {
BUG_ON(1);
}
if (is_hx8(wc)) {
ret = hx8_check_firmware(wc);
if (ret) {
wctdm_back_out_gracefully(wc);
return -EIO;
}
/* Switch to the normal operating mode for this card. */
voicebus_stop(&wc->vb);
wc->vb.ops = &voicebus_operations;
voicebus_set_minlatency(&wc->vb, latency);
voicebus_set_maxlatency(&wc->vb, max_latency);
voicebus_set_hx8_mode(&wc->vb);
if (voicebus_start(&wc->vb))
BUG_ON(1);
}
/* first we have to make sure that we process all module data, we'll fine-tune it later in this routine. */
wc->avchannels = NUM_MODULES;
vpm_work = bg_create(wc, wctdm_initialize_vpm, 0);
if (!vpm_work) {
wctdm_back_out_gracefully(wc);
return -ENOMEM;
}
/* Now track down what modules are installed */
wctdm_identify_modules(wc);
wctdm_set_tdm410_leds(wc);
if (fatal_signal_pending(current)) {
wctdm_back_out_gracefully(wc);
bg_join(vpm_work);
return -EINTR;
}
/* We need to wait for the vpm thread to finish before we setup the
* spans in order to ensure they are named properly. */
bg_join(vpm_work);
/*
* Walk the module list and create a 3-channel span for every BRI module found.
* Empty and analog modules get a common span which is allocated outside of this loop.
*/
anamods = digimods = 0;
curchan = curspan = 0;
for (i = 0; i < wc->mods_per_board; i++) {
struct wctdm_module *const mod = &wc->mods[i];
struct b400m *b4;
if (mod->type == NONE) {
++curspan;
continue;
} else if (mod->type == BRI) {
if (!is_hx8(wc)) {
dev_info(&wc->vb.pdev->dev, "Digital modules "
"detected on a non-hybrid card. "
"This is unsupported.\n");
wctdm_back_out_gracefully(wc);
bg_join(vpm_work);
return -EIO;
}
wc->spans[curspan] = wctdm_init_span(wc, curspan,
curchan, 3, 1,
pos);
if (!wc->spans[curspan]) {
wctdm_back_out_gracefully(wc);
bg_join(vpm_work);
return -EIO;
}
b4 = mod->mod.bri;
b400m_set_dahdi_span(b4, i & 0x03, wc->spans[curspan]);
++curspan;
curchan += 3;
if (!(i & 0x03)) {
b400m_post_init(b4);
++digimods;
}
} else {
/*
* FIXME: ABK:
* create a wctdm_chan for every analog module and link them into a span of their own down below.
* then evaluate all of the callbacks and hard-code whether they are receiving a dahdi_chan or wctdm_chan *.
* Finally, move the union from the wctdm structure to the dahdi_chan structure, and we should have something
* resembling a clean dynamic # of channels/dynamic # of spans driver.
*/
++curspan;
++anamods;
}
if (digimods > 2) {
dev_info(&wc->vb.pdev->dev, "More than two digital modules detected. This is unsupported.\n");
wctdm_back_out_gracefully(wc);
return -EIO;
}
}
wc->digi_mods = digimods;
/* create an analog span if there are analog modules, or if there are no digital ones. */
if (anamods || !digimods) {
if (!digimods) {
curspan = 0;
}
wctdm_init_span(wc, curspan, curchan, wc->desc->ports, 0, pos);
wctdm_fixup_analog_span(wc, curspan);
wc->aspan = wc->spans[curspan];
curchan += wc->desc->ports;
++curspan;
}
/* Now fix up the timeslots for the analog modules, since the digital
* modules are always first */
for (i = 0; i < wc->mods_per_board; i++) {
struct wctdm_module *const mod = &wc->mods[i];
switch (mod->type) {
case FXS:
wctdm_proslic_set_ts(wc, mod, (digimods * 12) + i);
break;
case FXO:
wctdm_voicedaa_set_ts(wc, mod, (digimods * 12) + i);
break;
case QRV:
wctdm_qrvdri_set_ts(wc, mod, (digimods * 12) + i);
break;
default:
break;
}
}
/* This shouldn't ever occur, but if we don't try to trap it, the driver
* will be scribbling into memory it doesn't own. */
BUG_ON(curchan > 24);
wc->avchannels = curchan;
#ifdef USE_ASYNC_INIT
async_synchronize_cookie(cookie);
#endif
wc->ddev = dahdi_create_device();
wc->ddev->manufacturer = "Digium";
wc->ddev->location = kasprintf(GFP_KERNEL, "PCI%s Bus %02d Slot %02d",
(wc->desc->flags & FLAG_EXPRESS) ?
" Express" : "",
pdev->bus->number,
PCI_SLOT(pdev->devfn) + 1);
if (!wc->ddev->location) {
wctdm_back_out_gracefully(wc);
return -ENOMEM;
}
if (wc->vpmadt032) {
wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s (VPMADT032)",
wc->desc->name);
} else if (wc->vpmoct) {
wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s (VPMOCT032)",
wc->desc->name);
} else {
wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s",
wc->desc->name);
}
if (!wc->ddev->devicetype) {
wctdm_back_out_gracefully(wc);
return -ENOMEM;
}
/* We should be ready for DAHDI to come in now. */
for (i = 0; i < MAX_SPANS; ++i) {
struct dahdi_span *span;
if (!wc->spans[i])
continue;
span = &wc->spans[i]->span;
list_add_tail(&span->device_node, &wc->ddev->spans);
}
wctdm_allocate_irq_commands(wc, anamods * latency * 4);
if (dahdi_register_device(wc->ddev, &wc->vb.pdev->dev)) {
dev_notice(&wc->vb.pdev->dev, "Unable to register device with DAHDI\n");
wctdm_back_out_gracefully(wc);
return -1;
}
dev_info(&wc->vb.pdev->dev,
"Found a %s: %s (%d BRI spans, %d analog %s)\n",
(is_hx8(wc)) ? "Hybrid card" : "Wildcard TDM",
wc->desc->name, digimods*4, anamods,
(anamods == 1) ? "channel" : "channels");
ret = 0;
voicebus_unlock_latency(&wc->vb);
return 0;
}
#ifdef USE_ASYNC_INIT
static __devinit void
wctdm_init_one_async(void *data, async_cookie_t cookie)
{
struct async_data *dat = data;
__wctdm_init_one(dat->pdev, dat->ent, cookie);
kfree(dat);
}
static int __devinit
wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct async_data *dat;
dat = kmalloc(sizeof(*dat), GFP_KERNEL);
/* If we can't allocate the memory for the async_data, odds are we won't
* be able to initialize the device either, but let's try synchronously
* anyway... */
if (!dat)
return __wctdm_init_one(pdev, ent, 0);
dat->pdev = pdev;
dat->ent = ent;
async_schedule(wctdm_init_one_async, dat);
return 0;
}
#else
static int __devinit
wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
return __wctdm_init_one(pdev, ent);
}
#endif
static void wctdm_release(struct wctdm *wc)
{
int i;
if (is_initialized(wc))
dahdi_unregister_device(wc->ddev);
down(&ifacelock);
for (i = 0; i < WC_MAX_IFACES; i++)
if (ifaces[i] == wc)
break;
ifaces[i] = NULL;
up(&ifacelock);
wctdm_back_out_gracefully(wc);
}
static void __devexit wctdm_remove_one(struct pci_dev *pdev)
{
int i;
unsigned long flags;
struct wctdm *wc = pci_get_drvdata(pdev);
struct vpmadt032 *vpmadt032;
struct vpmoct *vpmoct;
if (!wc)
return;
vpmadt032 = wc->vpmadt032;
vpmoct = wc->vpmoct;
remove_sysfs_files(wc);
if (vpmadt032) {
flush_workqueue(vpmadt032->wq);
clear_bit(VPM150M_ACTIVE, &vpmadt032->control);
flush_workqueue(vpmadt032->wq);
} else if (vpmoct) {
while (wctdm_wait_for_ready(wc))
schedule();
}
flush_scheduled_work();
/* shut down any BRI modules */
for (i = 0; i < wc->mods_per_board; i += 4) {
if (wc->mods[i].type == BRI)
wctdm_unload_b400m(wc, i);
}
voicebus_stop(&wc->vb);
if (vpmadt032) {
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmadt032 = NULL;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmadt032_free(vpmadt032);
} else if (vpmoct) {
spin_lock_irqsave(&wc->reglock, flags);
wc->vpmoct = NULL;
spin_unlock_irqrestore(&wc->reglock, flags);
vpmoct_free(vpmoct);
}
dev_info(&wc->vb.pdev->dev, "Freed a %s\n",
(is_hx8(wc)) ? "Hybrid card" : "Wildcard");
/* Release span */
wctdm_release(wc);
}
static DEFINE_PCI_DEVICE_TABLE(wctdm_pci_tbl) = {
{ 0xd161, 0x2400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm2400 },
{ 0xd161, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm800 },
{ 0xd161, 0x8002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcaex800 },
{ 0xd161, 0x8003, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcaex2400 },
{ 0xd161, 0x8005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm410 },
{ 0xd161, 0x8006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcaex410 },
{ 0xd161, 0x8007, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcha80000 },
{ 0xd161, 0x8008, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wchb80000 },
{ 0 }
};
static void wctdm_shutdown(struct pci_dev *pdev)
{
struct wctdm *wc = pci_get_drvdata(pdev);
voicebus_quiesce(&wc->vb);
}
MODULE_DEVICE_TABLE(pci, wctdm_pci_tbl);
static int wctdm_suspend(struct pci_dev *pdev, pm_message_t state)
{
return -ENOSYS;
}
static struct pci_driver wctdm_driver = {
.name = "wctdm24xxp",
.probe = wctdm_init_one,
.remove = __devexit_p(wctdm_remove_one),
.shutdown = wctdm_shutdown,
.suspend = wctdm_suspend,
.id_table = wctdm_pci_tbl,
};
static int __init wctdm_init(void)
{
int res;
int x;
for (x = 0; x < ARRAY_SIZE(fxo_modes); x++) {
if (!strcmp(fxo_modes[x].name, opermode))
break;
}
if (x < ARRAY_SIZE(fxo_modes)) {
_opermode = x;
} else {
printk(KERN_NOTICE "Invalid/unknown operating mode '%s' "
"specified. Please choose one of:\n", opermode);
for (x = 0; x < ARRAY_SIZE(fxo_modes); x++)
printk(KERN_CONT " %s\n", fxo_modes[x].name);
printk(KERN_NOTICE "Note this option is CASE SENSITIVE!\n");
return -ENODEV;
}
if (!strcmp(opermode, "AUSTRALIA")) {
boostringer = 1;
fxshonormode = 1;
}
if (-1 == fastpickup) {
if (!strcmp(opermode, "JAPAN"))
fastpickup = 1;
else
fastpickup = 0;
}
/* for the voicedaa_check_hook defaults, if the user has not overridden
them by specifying them as module parameters, then get the values
from the selected operating mode
*/
if (battdebounce == 0) {
battdebounce = fxo_modes[_opermode].battdebounce;
}
if (battalarm == 0) {
battalarm = fxo_modes[_opermode].battalarm;
}
if (battthresh == 0) {
battthresh = fxo_modes[_opermode].battthresh;
}
b400m_module_init();
res = dahdi_pci_module(&wctdm_driver);
if (res)
return -ENODEV;
#ifdef USE_ASYNC_INIT
async_synchronize_full();
#endif
return 0;
}
static void __exit wctdm_cleanup(void)
{
pci_unregister_driver(&wctdm_driver);
}
module_param(debug, int, 0600);
module_param(fastpickup, int, 0400);
MODULE_PARM_DESC(fastpickup,
"Set to 1 to shorten the calibration delay when taking " \
"an FXO port off hook. This can be required for Type-II " \
"CID. If -1 the calibration delay will depend on the " \
"current opermode.\n");
module_param(fxovoltage, int, 0600);
module_param(loopcurrent, int, 0600);
module_param(reversepolarity, int, 0600);
#ifdef DEBUG
module_param(robust, int, 0600);
module_param(digitalloopback, int, 0400);
MODULE_PARM_DESC(digitalloopback, "Set to 1 to place FXO modules into " \
"loopback mode for troubleshooting.");
#endif
module_param(opermode, charp, 0600);
module_param(lowpower, int, 0600);
module_param(boostringer, int, 0600);
module_param(fastringer, int, 0600);
module_param(fxshonormode, int, 0600);
module_param(battdebounce, uint, 0600);
module_param(battalarm, uint, 0600);
module_param(battthresh, uint, 0600);
module_param(nativebridge, int, 0600);
module_param(fxotxgain, int, 0600);
module_param(fxorxgain, int, 0600);
module_param(fxstxgain, int, 0600);
module_param(fxsrxgain, int, 0600);
module_param(ringdebounce, int, 0600);
module_param(latency, int, 0400);
module_param(max_latency, int, 0400);
module_param(neonmwi_monitor, int, 0600);
module_param(neonmwi_level, int, 0600);
module_param(neonmwi_envelope, int, 0600);
module_param(neonmwi_offlimit, int, 0600);
#ifdef VPM_SUPPORT
module_param(vpmsupport, int, 0400);
module_param(vpmnlptype, int, 0400);
module_param(vpmnlpthresh, int, 0400);
module_param(vpmnlpmaxsupp, int, 0400);
#endif
/* Module parameters backed by code in xhfc.c */
module_param(bri_debug, int, 0600);
MODULE_PARM_DESC(bri_debug, "bitmap: 1=general 2=dtmf 4=regops 8=fops 16=ec 32=st state 64=hdlc 128=alarm");
module_param(bri_spanfilter, int, 0600);
MODULE_PARM_DESC(bri_spanfilter, "debug filter for spans. bitmap: 1=port 1, 2=port 2, 4=port 3, 8=port 4");
module_param(bri_alarmdebounce, int, 0600);
MODULE_PARM_DESC(bri_alarmdebounce, "msec to wait before set/clear alarm condition");
module_param(bri_teignorered, int, 0600);
MODULE_PARM_DESC(bri_teignorered, "1=ignore (do not inform DAHDI) if a red alarm exists in TE mode");
module_param(bri_persistentlayer1, int, 0600);
MODULE_PARM_DESC(bri_persistentlayer1, "Set to 0 for disabling automatic layer 1 reactivation (when other end deactivates it)");
module_param(timingcable, int, 0600);
MODULE_PARM_DESC(timingcable, "Set to 1 for enabling timing cable. This means that *all* cards in the system are linked together with a single timing cable");
module_param(forceload, int, 0600);
MODULE_PARM_DESC(forceload, "Set to 1 in order to force an FPGA reload after power on (currently only for HA8/HB8 cards).");
module_param(alawoverride, int, 0400);
MODULE_PARM_DESC(alawoverride, "This option has been deprecated. Please use "\
"the parameter \"companding\" instead");
module_param(companding, charp, 0400);
MODULE_PARM_DESC(companding, "Change the companding to \"auto\" or \"alaw\" " \
"or \"ulaw\". Auto (default) will set everything to ulaw " \
"unless a BRI module is installed. It will use alaw in that "
"case.");
MODULE_DESCRIPTION("VoiceBus Driver for Wildcard Analog and Hybrid Cards");
MODULE_AUTHOR("Digium Incorporated <support@digium.com>");
MODULE_ALIAS("wctdm8xxp");
MODULE_ALIAS("wctdm4xxp");
MODULE_ALIAS("wcaex24xx");
MODULE_ALIAS("wcaex8xx");
MODULE_ALIAS("wcaex4xx");
MODULE_LICENSE("GPL v2");
module_init(wctdm_init);
module_exit(wctdm_cleanup);