dahdi-linux/drivers/dahdi/wcte13xp-base.c

3214 lines
83 KiB
C
Raw Normal View History

/*
* Digium, Inc. Wildcard te13xp T1/E1 card Driver
*
* Written by Russ Meyerriecks <rmeyerriecks@digium.com>
* Copyright (C) 2012 - 2013, Digium, Inc.
* All rights reserved.
*
*/
/*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2 as published by the
* Free Software Foundation. See the LICENSE file included with
* this program for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/moduleparam.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/crc32.h>
#include <stdbool.h>
#include <dahdi/kernel.h>
#include "wct4xxp/wct4xxp.h" /* For certain definitions */
#define VPM_SUPPORT
#define WC_MAX_IFACES 8
enum linemode {
T1 = 1,
E1,
J1,
};
/* FPGA Status definitions */
#define OCT_CPU_RESET (1 << 0)
#define OCT_CPU_DRAM_CKE (1 << 1)
#define STATUS_LED_GREEN (1 << 9)
#define STATUS_LED_RED (1 << 10)
#define FALC_CPU_RESET (1 << 11)
/* Descriptor ring definitions */
#define DRING_SIZE (1 << 7) /* Must be in multiples of 2 */
#define DRING_SIZE_MASK (DRING_SIZE-1)
#define DESC_EOR (1 << 0)
#define DESC_INT (1 << 1)
#define DESC_OWN (1 << 31)
#define DESC_DEFAULT_STATUS 0xdeadbeef
#define DMA_CHAN_SIZE 128
/* DMA definitions */
#define TDM_DRING_ADDR 0x2000
#define TDM_CONTROL (TDM_DRING_ADDR + 0x4)
#define ENABLE_ECHOCAN_TDM (1 << 0)
#define TDM_RECOVER_CLOCK (1 << 1)
#define ENABLE_DMA (1 << 2)
#define DMA_RUNNING (1 << 3)
#define DMA_LOOPBACK (1 << 4)
#define AUTHENTICATED (1 << 5)
#define TDM_VERSION (TDM_DRING_ADDR + 0x24)
/* Interrupt definitions */
#define INTERRUPT_CONTROL 0x300
#define ISR (INTERRUPT_CONTROL + 0x0)
#define IPR (INTERRUPT_CONTROL + 0x4)
#define IER (INTERRUPT_CONTROL + 0x8)
#define IAR (INTERRUPT_CONTROL + 0xc)
#define SIE (INTERRUPT_CONTROL + 0x10)
#define CIE (INTERRUPT_CONTROL + 0x14)
#define IVR (INTERRUPT_CONTROL + 0x18)
#define MER (INTERRUPT_CONTROL + 0x1c)
#define MER_ME (1<<0)
#define MER_HIE (1<<1)
#define DESC_UNDERRUN (1<<0)
#define DESC_COMPLETE (1<<1)
#define OCT_INT (1<<2)
#define FALC_INT (1<<3)
#define SPI_INT (1<<4)
struct t13x_hw_desc {
volatile __be32 status;
__be32 tx_buf;
__be32 rx_buf;
volatile __be32 control;
} __packed;
struct t13x_meta_desc {
void *tx_buf_virt;
void *rx_buf_virt;
};
struct t13x {
struct pci_dev *dev;
spinlock_t reglock;
unsigned long framecount;
void __iomem *membase;
struct t13x_meta_desc *meta_dring;
struct t13x_hw_desc *hw_dring;
unsigned int dma_head;
unsigned int dma_tail;
dma_addr_t hw_dring_phys;
struct dma_pool *pool;
u8 latency;
const struct t13x_desc *devtype;
struct {
unsigned int nmf:1;
unsigned int sendingyellow:1;
} flags;
unsigned char txsigs[16]; /* Copy of tx sig registers */
int alarmcount; /* How much red alarm we've seen */
int losalarmcount;
int aisalarmcount;
int yelalarmcount;
const char *name;
unsigned long blinktimer;
int loopupcnt;
int loopdowncnt;
#define INITIALIZED 1
#define SHUTDOWN 2
#define READY 3
#define LATENCY_LOCKED 4
unsigned long bit_flags;
unsigned long alarmtimer;
u32 ledstate;
struct dahdi_device *ddev;
struct dahdi_span span; /* Span */
struct dahdi_chan *chans[32]; /* Channels */
struct dahdi_echocan_state *ec[32]; /* Echocan state for channels */
/* protected by t1.reglock */
struct timer_list timer;
struct work_struct timer_work;
struct workqueue_struct *wq;
unsigned int not_ready; /* 0 when entire card is ready to go */
#ifdef VPM_SUPPORT
struct vpm450m *vpm;
#endif
struct mutex lock;
};
static void reset_dring(struct t13x *);
/* Maintenance Mode Registers */
#define LIM0 0x36
#define LIM0_LL (1<<1)
#define LIM1 0x37
#define LIM1_RL (1<<1)
#define LIM1_JATT (1<<2)
/* Clear Channel Registers */
#define CCB1 0x2f
#define CCB2 0x30
#define CCB3 0x31
/* pci memory map offsets */
#define DMA1 0x00 /* dma addresses */
#define DMA2 0x04
#define DMA3 0x08
#define CNTL 0x0C /* fpga control register */
#define INT_MASK 0x10 /* interrupt vectors from oct and framer */
#define INT_STAT 0x14
#define FRAMER_BASE 0x00000800 /* framer's address space */
#define TE13X_DEFAULT_LATENCY 3
static int debug;
static int alarmdebounce = 2500; /* LOF/LFA def to 2.5s AT&T TR54016*/
static int losalarmdebounce = 2500; /* LOS def to 2.5s AT&T TR54016*/
static int aisalarmdebounce = 2500; /* AIS(blue) def to 2.5s AT&T TR54016*/
static int yelalarmdebounce = 500; /* RAI(yellow) def to 0.5s AT&T devguide */
static char *default_linemode = "t1"; /* 'e1', 't1', or 'j1' */
static int force_firmware;
static int latency = TE13X_DEFAULT_LATENCY;
struct t13x_firm_header {
u8 header[6];
__le32 chksum;
u8 pad[18];
__le32 version;
} __packed;
#ifdef VPM_SUPPORT
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/version.h>
#include <linux/firmware.h>
#include <oct612x.h>
#define ECHOCAN_NUM_CHANS 32
#define FLAGBIT_DTMF 1
#define FLAGBIT_MUTE 2
#define FLAGBIT_ECHO 3
#define FLAGBIT_ALAW 4
#define OCT_CHIP_ID 0
#define OCT_MAX_TDM_STREAMS 4
#define OCT_TONEEVENT_BUFFER_SIZE 128
#define SOUT_STREAM 1
#define RIN_STREAM 0
#define SIN_STREAM 2
#define OCT_OFFSET (wc->membase + 0x10000)
#define OCT_CONTROL_REG (OCT_OFFSET + 0)
#define OCT_DATA_REG (OCT_OFFSET + 0x4)
#define OCT_ADDRESS_HIGH_REG (OCT_OFFSET + 0x8)
#define OCT_ADDRESS_LOW_REG (OCT_OFFSET + 0xa)
#define OCT_DIRECT_WRITE_MASK 0x3001
#define OCT_INDIRECT_READ_MASK 0x0101
#define OCT_INDIRECT_WRITE_MASK 0x3101
static int vpmsupport = 1;
static const char *vpm_name = "VPMOCT032";
static void t13x_vpm_init(struct t13x *wc);
static void echocan_free(struct dahdi_chan *chan,
struct dahdi_echocan_state *ec);
static const struct dahdi_echocan_features vpm_ec_features = {
.NLP_automatic = 1,
.CED_tx_detect = 1,
.CED_rx_detect = 1,
};
static const struct dahdi_echocan_ops vpm_ec_ops = {
.echocan_free = echocan_free,
};
struct vpm450m {
tPOCT6100_INSTANCE_API pApiInstance;
struct oct612x_context context;
UINT32 aulEchoChanHndl[ECHOCAN_NUM_CHANS];
int ecmode[ECHOCAN_NUM_CHANS];
unsigned long chanflags[ECHOCAN_NUM_CHANS];
};
static void oct_reset(struct t13x *wc)
{
unsigned long flags;
int reg;
spin_lock_irqsave(&wc->reglock, flags);
reg = ioread32be(wc->membase);
iowrite32be((reg & ~OCT_CPU_RESET), wc->membase);
spin_unlock_irqrestore(&wc->reglock, flags);
msleep_interruptible(1);
spin_lock_irqsave(&wc->reglock, flags);
reg = ioread32be(wc->membase);
iowrite32be((reg | OCT_CPU_RESET), wc->membase);
spin_unlock_irqrestore(&wc->reglock, flags);
dev_info(&wc->dev->dev, "Reset octasic\n");
}
static void oct_enable_dram(struct t13x *wc)
{
unsigned long flags;
int reg;
spin_lock_irqsave(&wc->reglock, flags);
reg = ioread32be(wc->membase);
iowrite32be((reg | OCT_CPU_DRAM_CKE), wc->membase);
spin_unlock_irqrestore(&wc->reglock, flags);
}
static unsigned int oct_get_reg_indirect(void *data, uint32_t address)
{
struct t13x *wc = data;
uint16_t highaddress = ((address >> 20) & 0xfff);
uint16_t lowaddress = ((address >> 4) & 0xfffff);
unsigned long stop = jiffies + HZ/10;
unsigned long flags;
uint16_t ret;
spin_lock_irqsave(&wc->reglock, flags);
iowrite16be(highaddress, OCT_ADDRESS_HIGH_REG);
iowrite16be(lowaddress, OCT_ADDRESS_LOW_REG);
iowrite16be(OCT_INDIRECT_READ_MASK | ((address & 0xe) << 8),
OCT_CONTROL_REG);
do {
ret = ioread16be(OCT_CONTROL_REG);
} while ((ret & (1<<8)) && time_before(jiffies, stop));
WARN_ON_ONCE(time_after_eq(jiffies, stop));
ret = ioread16be(OCT_DATA_REG);
spin_unlock_irqrestore(&wc->reglock, flags);
return ret;
}
static void oct_set_reg_indirect(void *data, uint32_t address, uint16_t val)
{
struct t13x *wc = data;
unsigned long flags;
uint16_t ret;
uint16_t highaddress = ((address >> 20) & 0xfff);
uint16_t lowaddress = ((address >> 4) & 0xffff);
unsigned long stop = jiffies + HZ/10;
spin_lock_irqsave(&wc->reglock, flags);
iowrite16be(highaddress, OCT_ADDRESS_HIGH_REG);
iowrite16be(lowaddress, OCT_ADDRESS_LOW_REG);
iowrite16be(val, OCT_DATA_REG);
iowrite16be(OCT_INDIRECT_WRITE_MASK | ((address & 0xe) << 8),
OCT_CONTROL_REG);
/* No write should take longer than 100ms */
do {
ret = ioread16be(OCT_CONTROL_REG);
} while ((ret & (1<<8)) && time_before(jiffies, stop));
spin_unlock_irqrestore(&wc->reglock, flags);
WARN_ON_ONCE(time_after_eq(jiffies, stop));
}
static int t13x_oct612x_write(struct oct612x_context *context,
u32 address, u16 value)
{
oct_set_reg_indirect(dev_get_drvdata(context->dev), address, value);
return 0;
}
static int t13x_oct612x_read(struct oct612x_context *context, u32 address,
u16 *value)
{
*value = oct_get_reg_indirect(dev_get_drvdata(context->dev), address);
return 0;
}
static int t13x_oct612x_write_smear(struct oct612x_context *context,
u32 address, u16 value, size_t count)
{
unsigned int i;
struct t13x *wc = dev_get_drvdata(context->dev);
for (i = 0; i < count; ++i)
oct_set_reg_indirect(wc, address + (i << 1), value);
return 0;
}
static int t13x_oct612x_write_burst(struct oct612x_context *context,
u32 address, const u16 *buffer,
size_t count)
{
unsigned int i;
struct t13x *wc = dev_get_drvdata(context->dev);
for (i = 0; i < count; ++i)
oct_set_reg_indirect(wc, address + (i << 1), buffer[i]);
return 0;
}
static int t13x_oct612x_read_burst(struct oct612x_context *context,
u32 address, u16 *buffer, size_t count)
{
unsigned int i;
struct t13x *wc = dev_get_drvdata(context->dev);
for (i = 0; i < count; ++i)
buffer[i] = oct_get_reg_indirect(wc, address + (i << 1));
return 0;
}
static const struct oct612x_ops t13x_oct612x_ops = {
.write = t13x_oct612x_write,
.read = t13x_oct612x_read,
.write_smear = t13x_oct612x_write_smear,
.write_burst = t13x_oct612x_write_burst,
.read_burst = t13x_oct612x_read_burst,
};
static void vpm450m_setecmode(struct vpm450m *vpm450m, int channel, int mode)
{
tOCT6100_CHANNEL_MODIFY *modify;
UINT32 ulResult;
if (vpm450m->ecmode[channel] == mode)
return;
modify = kzalloc(sizeof(tOCT6100_CHANNEL_MODIFY), GFP_ATOMIC);
if (!modify) {
pr_notice("Unable to allocate memory for setec!\n");
return;
}
Oct6100ChannelModifyDef(modify);
modify->ulEchoOperationMode = mode;
modify->ulChannelHndl = vpm450m->aulEchoChanHndl[channel];
ulResult = Oct6100ChannelModify(vpm450m->pApiInstance, modify);
if (ulResult != GENERIC_OK) {
pr_notice("Failed to apply echo can changes on channel %d %d %08x!\n",
vpm450m->aulEchoChanHndl[channel], channel, ulResult);
} else {
#ifdef OCTASIC_DEBUG
pr_debug("Echo can on channel %d set to %d\n", channel, mode);
#endif
vpm450m->ecmode[channel] = mode;
}
kfree(modify);
}
static void vpm450m_set_alaw_companding(struct vpm450m *vpm450m, int channel,
bool alaw)
{
tOCT6100_CHANNEL_MODIFY *modify;
UINT32 ulResult;
UINT32 law_to_use = (alaw) ? cOCT6100_PCM_A_LAW :
cOCT6100_PCM_U_LAW;
/* If we're already in this companding mode, no need to do anything. */
if (alaw == (test_bit(FLAGBIT_ALAW, &vpm450m->chanflags[channel]) > 0))
return;
modify = kzalloc(sizeof(tOCT6100_CHANNEL_MODIFY), GFP_ATOMIC);
if (!modify) {
pr_notice("Unable to allocate memory for setec!\n");
return;
}
Oct6100ChannelModifyDef(modify);
modify->ulChannelHndl = vpm450m->aulEchoChanHndl[channel];
modify->fTdmConfigModified = TRUE;
modify->TdmConfig.ulSinPcmLaw = law_to_use;
modify->TdmConfig.ulRinPcmLaw = law_to_use;
modify->TdmConfig.ulSoutPcmLaw = law_to_use;
modify->TdmConfig.ulRoutPcmLaw = law_to_use;
ulResult = Oct6100ChannelModify(vpm450m->pApiInstance, modify);
if (ulResult != GENERIC_OK) {
pr_notice("Failed to apply echo can changes on channel %d %d %08x!\n",
vpm450m->aulEchoChanHndl[channel], channel, ulResult);
} else {
pr_info("Changed companding on channel %d to %s.\n", channel,
(alaw) ? "alaw" : "ulaw");
if (alaw)
set_bit(FLAGBIT_ALAW, &vpm450m->chanflags[channel]);
else
clear_bit(FLAGBIT_ALAW, &vpm450m->chanflags[channel]);
}
kfree(modify);
}
static void vpm450m_setec(struct vpm450m *vpm450m, int channel, int eclen)
{
if (eclen) {
set_bit(FLAGBIT_ECHO, &vpm450m->chanflags[channel]);
vpm450m_setecmode(vpm450m, channel,
cOCT6100_ECHO_OP_MODE_NORMAL);
} else {
unsigned long *flags = &vpm450m->chanflags[channel];
clear_bit(FLAGBIT_ECHO, &vpm450m->chanflags[channel]);
if (test_bit(FLAGBIT_DTMF, flags) ||
test_bit(FLAGBIT_MUTE, flags)) {
vpm450m_setecmode(vpm450m, channel,
cOCT6100_ECHO_OP_MODE_HT_RESET);
} else {
vpm450m_setecmode(vpm450m, channel,
cOCT6100_ECHO_OP_MODE_POWER_DOWN);
}
}
}
static UINT32 tdmmode_chan_to_slot_map(int channel)
{
/* Four phases on the tdm bus, skip three of them per channel */
/* Due to a bug in the octasic, we had to move the data onto phase 2 */
return 1+(channel*4);
}
static int echocan_initialize_channel(
struct vpm450m *vpm, int channel, int mode)
{
tOCT6100_CHANNEL_OPEN ChannelOpen;
UINT32 law_to_use = (mode) ? cOCT6100_PCM_A_LAW :
cOCT6100_PCM_U_LAW;
UINT32 tdmslot_setting;
UINT32 ulResult;
if (0 > channel || ECHOCAN_NUM_CHANS <= channel)
return -1;
tdmslot_setting = tdmmode_chan_to_slot_map(channel);
/* Fill Open channel structure with defaults */
Oct6100ChannelOpenDef(&ChannelOpen);
/* Assign the handle memory.*/
ChannelOpen.pulChannelHndl = &vpm->aulEchoChanHndl[channel];
ChannelOpen.ulUserChanId = channel;
/* Enable Tone disabling for Fax and Modems */
ChannelOpen.fEnableToneDisabler = TRUE;
/* Passthrough TDM data by default, no echocan */
ChannelOpen.ulEchoOperationMode = cOCT6100_ECHO_OP_MODE_POWER_DOWN;
/* Configure the TDM settings.*/
/* Input from the framer */
ChannelOpen.TdmConfig.ulSinStream = SIN_STREAM;
ChannelOpen.TdmConfig.ulSinTimeslot = tdmslot_setting;
ChannelOpen.TdmConfig.ulSinPcmLaw = law_to_use;
/* Input from the Host (pre-framer) */
ChannelOpen.TdmConfig.ulRinStream = RIN_STREAM;
ChannelOpen.TdmConfig.ulRinTimeslot = tdmslot_setting;
ChannelOpen.TdmConfig.ulRinPcmLaw = law_to_use;
/* Output to the Host */
ChannelOpen.TdmConfig.ulSoutStream = SOUT_STREAM;
ChannelOpen.TdmConfig.ulSoutTimeslot = tdmslot_setting;
ChannelOpen.TdmConfig.ulSoutPcmLaw = law_to_use;
/* From asterisk after echo-cancellation - goes nowhere */
ChannelOpen.TdmConfig.ulRoutStream = cOCT6100_UNASSIGNED;
ChannelOpen.TdmConfig.ulRoutTimeslot = cOCT6100_UNASSIGNED;
ChannelOpen.TdmConfig.ulRoutPcmLaw = law_to_use;
/* Set the desired VQE features.*/
ChannelOpen.VqeConfig.fEnableNlp = TRUE;
ChannelOpen.VqeConfig.fRinDcOffsetRemoval = TRUE;
ChannelOpen.VqeConfig.fSinDcOffsetRemoval = TRUE;
ChannelOpen.VqeConfig.ulComfortNoiseMode =
cOCT6100_COMFORT_NOISE_NORMAL;
/* Open the channel.*/
ulResult = Oct6100ChannelOpen(vpm->pApiInstance, &ChannelOpen);
return ulResult;
}
static struct vpm450m *init_vpm450m(struct t13x *wc, int isalaw,
const struct firmware *firmware)
{
tOCT6100_CHIP_OPEN *ChipOpen;
tOCT6100_GET_INSTANCE_SIZE InstanceSize;
tOCT6100_CHANNEL_OPEN *ChannelOpen;
UINT32 ulResult;
struct vpm450m *vpm450m;
int x, i, reg;
vpm450m = kzalloc(sizeof(struct vpm450m), GFP_KERNEL);
if (!vpm450m) {
dev_info(&wc->dev->dev, "Unable to allocate vpm450m struct\n");
return NULL;
}
vpm450m->context.dev = &wc->dev->dev;
vpm450m->context.ops = &t13x_oct612x_ops;
ChipOpen = kzalloc(sizeof(tOCT6100_CHIP_OPEN), GFP_KERNEL);
if (!ChipOpen) {
dev_info(&wc->dev->dev, "Unable to allocate ChipOpen\n");
kfree(vpm450m);
return NULL;
}
ChannelOpen = kzalloc(sizeof(tOCT6100_CHANNEL_OPEN), GFP_KERNEL);
if (!ChannelOpen) {
dev_info(&wc->dev->dev, "Unable to allocate ChannelOpen\n");
kfree(vpm450m);
kfree(ChipOpen);
return NULL;
}
for (x = 0; x < ARRAY_SIZE(vpm450m->ecmode); x++)
vpm450m->ecmode[x] = -1;
dev_info(&wc->dev->dev, "Echo cancellation for %d channels\n",
ECHOCAN_NUM_CHANS);
Oct6100ChipOpenDef(ChipOpen);
ChipOpen->pProcessContext = &vpm450m->context;
/* Change default parameters as needed */
/* upclk oscillator is at 33.33 Mhz */
ChipOpen->ulUpclkFreq = cOCT6100_UPCLK_FREQ_33_33_MHZ;
/* mclk will be generated by internal PLL at 133 Mhz */
ChipOpen->fEnableMemClkOut = TRUE;
ChipOpen->ulMemClkFreq = cOCT6100_MCLK_FREQ_133_MHZ;
/* User defined Chip ID.*/
ChipOpen->ulUserChipId = OCT_CHIP_ID;
/* Set the maximums that the chip needs to support */
ChipOpen->ulMaxChannels = ECHOCAN_NUM_CHANS;
ChipOpen->ulMaxTdmStreams = OCT_MAX_TDM_STREAMS;
/* External Memory Settings */
/* Use DDR memory.*/
ChipOpen->ulMemoryType = cOCT6100_MEM_TYPE_DDR;
ChipOpen->ulNumMemoryChips = 1;
ChipOpen->ulMemoryChipSize = cOCT6100_MEMORY_CHIP_SIZE_32MB;
ChipOpen->pbyImageFile = (PUINT8) firmware->data;
ChipOpen->ulImageSize = firmware->size;
/* Set TDM data stream frequency */
for (i = 0; i < ChipOpen->ulMaxTdmStreams; i++)
ChipOpen->aulTdmStreamFreqs[i] = cOCT6100_TDM_STREAM_FREQ_8MHZ;
/* Configure TDM sampling */
ChipOpen->ulTdmSampling = cOCT6100_TDM_SAMPLE_AT_FALLING_EDGE;
/* Disable to save RAM footprint space */
ChipOpen->fEnableChannelRecording = FALSE;
/* In this example we will maintain the API using polling so
interrupts must be disabled */
ChipOpen->InterruptConfig.ulErrorH100Config =
cOCT6100_INTERRUPT_DISABLE;
ChipOpen->InterruptConfig.ulErrorMemoryConfig =
cOCT6100_INTERRUPT_DISABLE;
ChipOpen->InterruptConfig.ulFatalGeneralConfig =
cOCT6100_INTERRUPT_DISABLE;
ChipOpen->InterruptConfig.ulFatalMemoryConfig =
cOCT6100_INTERRUPT_DISABLE;
ChipOpen->ulSoftToneEventsBufSize = OCT_TONEEVENT_BUFFER_SIZE;
/* Inserting default values into tOCT6100_GET_INSTANCE_SIZE
structure parameters. */
Oct6100GetInstanceSizeDef(&InstanceSize);
/* Reset octasic device */
oct_reset(wc);
/* Get the size of the OCT6100 instance structure. */
ulResult = Oct6100GetInstanceSize(ChipOpen, &InstanceSize);
if (ulResult != cOCT6100_ERR_OK) {
dev_info(&wc->dev->dev, "Unable to get instance size: %x\n",
ulResult);
return NULL;
}
vpm450m->pApiInstance = vmalloc(InstanceSize.ulApiInstanceSize);
if (!vpm450m->pApiInstance) {
dev_info(&wc->dev->dev,
"Out of memory (can't allocate %d bytes)!\n",
InstanceSize.ulApiInstanceSize);
return NULL;
}
/* Perform the actual configuration of the chip. */
oct_enable_dram(wc);
ulResult = Oct6100ChipOpen(vpm450m->pApiInstance, ChipOpen);
if (ulResult != cOCT6100_ERR_OK) {
dev_info(&wc->dev->dev, "Unable to Oct6100ChipOpen: %x\n",
ulResult);
return NULL;
}
/* OCT6100 is now booted and channels can be opened */
/* Open all channels */
for (i = 0; i < ECHOCAN_NUM_CHANS; i++) {
ulResult = echocan_initialize_channel(vpm450m, i, isalaw);
if (0 != ulResult) {
dev_info(&wc->dev->dev,
"Unable to echocan_initialize_channel: %x\n",
ulResult);
return NULL;
} else if (isalaw) {
set_bit(FLAGBIT_ALAW, &vpm450m->chanflags[i]);
}
}
reg = ioread32be(wc->membase + TDM_CONTROL);
if (vpmsupport == 1)
iowrite32be(reg | ENABLE_ECHOCAN_TDM,
wc->membase + TDM_CONTROL);
else
iowrite32be(reg & ~ENABLE_ECHOCAN_TDM,
wc->membase + TDM_CONTROL);
kfree(ChipOpen);
kfree(ChannelOpen);
return vpm450m;
}
static void release_vpm450m(struct vpm450m *vpm450m)
{
UINT32 ulResult;
tOCT6100_CHIP_CLOSE ChipClose;
Oct6100ChipCloseDef(&ChipClose);
ulResult = Oct6100ChipClose(vpm450m->pApiInstance, &ChipClose);
if (ulResult != cOCT6100_ERR_OK)
pr_notice("Failed to close chip, code %08x!\n", ulResult);
vfree(vpm450m->pApiInstance);
kfree(vpm450m);
}
static const char *__t13x_echocan_name(struct t13x *wc)
{
if (wc->vpm)
return vpm_name;
else
return NULL;
}
static const char *t13x_echocan_name(const struct dahdi_chan *chan)
{
struct t13x *wc = chan->pvt;
return __t13x_echocan_name(wc);
}
static int t13x_echocan_create(struct dahdi_chan *chan,
struct dahdi_echocanparams *ecp,
struct dahdi_echocanparam *p,
struct dahdi_echocan_state **ec)
{
struct t13x *wc = chan->pvt;
const int channel = chan->chanpos - 1;
const struct dahdi_echocan_ops *ops;
const struct dahdi_echocan_features *features;
const bool alaw = (chan->span->deflaw == 2);
if (!vpmsupport || !wc->vpm)
return -ENODEV;
ops = &vpm_ec_ops;
features = &vpm_ec_features;
if (ecp->param_count > 0) {
dev_warn(&wc->dev->dev, "%s echo canceller does not support parameters; failing request\n",
chan->ec_factory->get_name(chan));
return -EINVAL;
}
*ec = wc->ec[channel];
(*ec)->ops = ops;
(*ec)->features = *features;
vpm450m_set_alaw_companding(wc->vpm, channel, alaw);
vpm450m_setec(wc->vpm, channel, ecp->tap_length);
return 0;
}
static void echocan_free(struct dahdi_chan *chan,
struct dahdi_echocan_state *ec)
{
struct t13x *wc = chan->pvt;
const int channel = chan->chanpos - 1;
if (!wc->vpm)
return;
memset(ec, 0, sizeof(*ec));
vpm450m_setec(wc->vpm, channel, 0);
}
static void t13x_vpm_init(struct t13x *wc)
{
int companding = 0;
struct firmware embedded_firmware;
const struct firmware *firmware = &embedded_firmware;
#if !defined(HOTPLUG_FIRMWARE)
extern void _binary_dahdi_fw_oct6114_032_bin_size;
extern u8 _binary_dahdi_fw_oct6114_032_bin_start[];
#else
static const char oct032_firmware[] = "dahdi-fw-oct6114-032.bin";
#endif
if (!vpmsupport) {
dev_info(&wc->dev->dev, "VPM450: Support Disabled\n");
return;
}
#if defined(HOTPLUG_FIRMWARE)
if ((request_firmware(&firmware, oct032_firmware, &wc->dev->dev) != 0)
|| !firmware) {
dev_notice(&wc->dev->dev, "VPM450: firmware %s not available from userspace\n",
oct032_firmware);
return;
}
#else
embedded_firmware.data = _binary_dahdi_fw_oct6114_032_bin_start;
/* Yes... this is weird. objcopy gives us a symbol containing
the size of the firmware, not a pointer a variable containing
the size. The only way we can get the value of the symbol
is to take its address, so we define it as a pointer and
then cast that value to the proper type.
*/
embedded_firmware.size = (size_t)&_binary_dahdi_fw_oct6114_032_bin_size;
#endif
companding = dahdi_is_e1_span(&wc->span);
wc->vpm = init_vpm450m(wc, companding, firmware);
if (!wc->vpm) {
dev_notice(&wc->dev->dev, "VPM450: Failed to initialize\n");
if (firmware != &embedded_firmware)
release_firmware(firmware);
return;
}
if (firmware != &embedded_firmware)
release_firmware(firmware);
dev_info(&wc->dev->dev,
"VPM450: Present and operational servicing %d span\n", 1);
}
#endif /* VPM_SUPPORT */
static int t1xxp_clear_maint(struct dahdi_span *span);
static struct t13x *ifaces[WC_MAX_IFACES];
struct t13x_desc {
const char *name;
};
static const struct t13x_desc te133 = {"Wildcard TE133"}; /* pci express */
static const struct t13x_desc te134 = {"Wildcard TE134"}; /* legacy pci */
static inline bool is_pcie(const struct t13x *t1)
{
return t1->devtype == &te133;
}
static int __t1_pci_get(struct t13x *wc, unsigned int addr)
{
unsigned int res = ioread8(wc->membase + addr);
return res;
}
static inline int __t1_pci_set(struct t13x *wc, unsigned int addr, int val)
{
iowrite8(val, wc->membase + addr);
__t1_pci_get(wc, 0);
return 0;
}
static inline int t1_pci_get(struct t13x *wc, int addr)
{
unsigned int ret;
unsigned long flags;
spin_lock_irqsave(&wc->reglock, flags);
ret = __t1_pci_get(wc, addr);
spin_unlock_irqrestore(&wc->reglock, flags);
return ret;
}
static inline int t1_pci_set(struct t13x *wc, int addr, int val)
{
unsigned long flags;
unsigned int ret;
spin_lock_irqsave(&wc->reglock, flags);
ret = __t1_pci_set(wc, addr, val);
spin_unlock_irqrestore(&wc->reglock, flags);
return ret;
}
static inline int __t1_framer_set(struct t13x *wc, int addr, int val)
{
return __t1_pci_set(wc, FRAMER_BASE + addr, val);
}
static inline int t1_framer_set(struct t13x *wc, int addr, int val)
{
return t1_pci_set(wc, FRAMER_BASE + addr, val);
}
static inline int __t1_framer_get(struct t13x *wc, int addr)
{
return __t1_pci_get(wc, FRAMER_BASE + addr);
}
static inline int t1_framer_get(struct t13x *wc, int addr)
{
return t1_pci_get(wc, FRAMER_BASE + addr);
}
static void t1_framer_reset(struct t13x *wc)
{
unsigned long flags;
u32 scratch;
spin_lock_irqsave(&wc->reglock, flags);
scratch = ioread32be(wc->membase);
iowrite32be(scratch & ~(1UL << 11), wc->membase);
ioread32be(wc->membase);
udelay(100);
iowrite32be(scratch, wc->membase);
ioread32be(wc->membase);
spin_unlock_irqrestore(&wc->reglock, flags);
}
static void t1_setleds(struct t13x *wc, u32 leds)
{
unsigned long flags;
static const u32 LED_MASK = 0x600;
u32 scratch;
spin_lock_irqsave(&wc->reglock, flags);
scratch = ((ioread32be(wc->membase) & ~LED_MASK) | (leds & LED_MASK));
iowrite32be(scratch, wc->membase);
spin_unlock_irqrestore(&wc->reglock, flags);
}
static void __t1xxp_set_clear(struct t13x *wc)
{
int i, offset;
int ret;
unsigned short reg[3] = {0, 0, 0};
/* Calculate all states on all 24 channels using the channel
flags, then write all 3 clear channel registers at once */
for (i = 0; i < wc->span.channels; i++) {
offset = i/8;
if (wc->span.chans[i]->flags & DAHDI_FLAG_CLEAR)
reg[offset] |= 1 << (7 - (i % 8));
else
reg[offset] &= ~(1 << (7 - (i % 8)));
}
ret = t1_framer_set(wc, CCB1, reg[0]);
if (ret < 0)
dev_info(&wc->dev->dev, "Unable to set clear/rbs mode!\n");
ret = t1_framer_set(wc, CCB2, reg[1]);
if (ret < 0)
dev_info(&wc->dev->dev, "Unable to set clear/rbs mode!\n");
ret = t1_framer_set(wc, CCB3, reg[2]);
if (ret < 0)
dev_info(&wc->dev->dev, "Unable to set clear/rbs mode!\n");
}
/**
* _t1_free_channels - Free the memory allocated for the channels.
*
* Must be called with wc->reglock held.
*
*/
static void _t1_free_channels(struct t13x *wc)
{
int x;
for (x = 0; x < ARRAY_SIZE(wc->chans); x++) {
kfree(wc->chans[x]);
kfree(wc->ec[x]);
wc->chans[x] = NULL;
wc->ec[x] = NULL;
}
}
static void free_wc(struct t13x *wc)
{
unsigned long flags;
LIST_HEAD(list);
spin_lock_irqsave(&wc->reglock, flags);
_t1_free_channels(wc);
spin_unlock_irqrestore(&wc->reglock, flags);
if (wc->wq)
destroy_workqueue(wc->wq);
kfree(wc->ddev->location);
kfree(wc->ddev->devicetype);
kfree(wc->ddev->hardware_id);
if (wc->ddev)
dahdi_free_device(wc->ddev);
kfree(wc->name);
kfree(wc);
}
static void t4_serial_setup(struct t13x *wc)
{
unsigned long flags;
spin_lock_irqsave(&wc->reglock, flags);
__t1_framer_set(wc, 0x85, 0xe0); /* GPC1: Multiplex mode
enabled, FSC is output,
active low, RCLK from
channel 0 */
__t1_framer_set(wc, 0x08, 0x05); /* IPC: Interrupt push/pull
active low */
/* Global clocks (8.192 Mhz CLK) */
__t1_framer_set(wc, 0x92, 0x00);
__t1_framer_set(wc, 0x93, 0x18);
__t1_framer_set(wc, 0x94, 0xfb);
__t1_framer_set(wc, 0x95, 0x0b);
__t1_framer_set(wc, 0x96, 0x00);
__t1_framer_set(wc, 0x97, 0x0b);
__t1_framer_set(wc, 0x98, 0xdb);
__t1_framer_set(wc, 0x99, 0xdf);
/* Configure interrupts */
__t1_framer_set(wc, 0x46, 0xc0); /* GCR: Interrupt on
Activation/Deactivation of
AIX, LOS */
/* Configure system interface */
__t1_framer_set(wc, 0x3e, 0xc2); /* SIC1: 8.192 Mhz clock/bus,
double buffer receive /
transmit, byte interleaved
*/
__t1_framer_set(wc, 0x3f, 0x02); /* SIC2: No FFS, no center
receive eliastic buffer,
phase 1 */
__t1_framer_set(wc, 0x40, 0x04); /* SIC3: Edges for capture */
__t1_framer_set(wc, 0x44, 0x30); /* CMR1: RCLK is at 8.192 Mhz
dejittered */
__t1_framer_set(wc, 0x45, 0x00); /* CMR2: We provide sync and
clock for tx and rx. */
__t1_framer_set(wc, 0x22, 0x00); /* XC0: Normal operation of
Sa-bits */
__t1_framer_set(wc, 0x23, 0x02); /* XC1: 0 offset */
__t1_framer_set(wc, 0x24, 0x00); /* RC0: Just shy of 255 */
__t1_framer_set(wc, 0x25, 0x03); /* RC1: The rest of RC0 */
/* Configure ports */
__t1_framer_set(wc, 0x80, 0x00); /* PC1: SPYR/SPYX input on
RPA/XPA */
__t1_framer_set(wc, 0x81, 0x22); /* PC2: RMFB/XSIG output/input
on RPB/XPB */
__t1_framer_set(wc, 0x82, 0x65); /* PC3: Unused stuff */
__t1_framer_set(wc, 0x83, 0x35); /* PC4: Unused stuff */
__t1_framer_set(wc, 0x84, 0x31); /* PC5: XMFS active low, SCLKR
is input, RCLK is output */
__t1_framer_set(wc, 0x86, 0x03); /* PC6: CLK1 is Tx Clock
output, CLK2 is 8.192 Mhz
from DCO-R */
__t1_framer_set(wc, 0x3b, 0x00); /* Clear LCR1 */
spin_unlock_irqrestore(&wc->reglock, flags);
}
static void t1_configure_t1(struct t13x *wc, int lineconfig, int txlevel)
{
unsigned int fmr4, fmr2, fmr1, fmr0, lim2;
char *framing, *line;
int mytxlevel;
unsigned long flags;
if ((txlevel > 7) || (txlevel < 4))
mytxlevel = 0;
else
mytxlevel = txlevel - 4;
fmr1 = 0x9c; /* FMR1: Mode 0, T1 mode, CRC on for ESF, 2.048 Mhz system
data rate, no XAIS */
fmr2 = 0x20; /* FMR2: no payload loopback, don't auto yellow alarm */
if (SPANTYPE_DIGITAL_J1 == wc->span.spantype)
fmr4 = 0x1c;
else
fmr4 = 0x0c; /* FMR4: Lose sync on 2 out of 5 framing bits,
auto resync */
lim2 = 0x21; /* LIM2: 50% peak is a "1", Advanced Loss recovery */
lim2 |= (mytxlevel << 6); /* LIM2: Add line buildout */
spin_lock_irqsave(&wc->reglock, flags);
__t1_framer_set(wc, 0x1d, fmr1);
__t1_framer_set(wc, 0x1e, fmr2);
/* Configure line interface */
if (lineconfig & DAHDI_CONFIG_AMI) {
line = "AMI";
fmr0 = 0xa0;
} else {
line = "B8ZS";
fmr0 = 0xf0;
}
if (lineconfig & DAHDI_CONFIG_D4) {
framing = "D4";
} else {
framing = "ESF";
fmr4 |= 0x2;
fmr2 |= 0xc0;
}
__t1_framer_set(wc, 0x1c, fmr0);
__t1_framer_set(wc, 0x20, fmr4);
__t1_framer_set(wc, 0x21, 0x40); /* FMR5: Enable RBS mode */
__t1_framer_set(wc, 0x37, 0xf8); /* LIM1: Clear data in case of
LOS, Set receiver threshold
(0.5V), No remote loop, no
DRS */
__t1_framer_set(wc, 0x36, 0x08); /* LIM0: Enable auto long haul
mode, no local loop (must be
after LIM1) */
__t1_framer_set(wc, 0x02, 0x50); /* CMDR: Reset the receiver and
transmitter line interface
*/
__t1_framer_set(wc, 0x02, 0x00); /* CMDR: Reset the receiver and
transmitter line interface
*/
__t1_framer_set(wc, 0x3a, lim2); /* LIM2: 50% peak amplitude is
a "1" */
__t1_framer_set(wc, 0x38, 0x0a); /* PCD: LOS after 176
consecutive "zeros" */
__t1_framer_set(wc, 0x39, 0x15); /* PCR: 22 "ones" clear LOS */
if (SPANTYPE_DIGITAL_J1 == wc->span.spantype)
__t1_framer_set(wc, 0x24, 0x80); /* J1 overide */
/* Generate pulse mask for T1 */
switch (mytxlevel) {
case 3:
__t1_framer_set(wc, 0x26, 0x07); /* XPM0 */
__t1_framer_set(wc, 0x27, 0x01); /* XPM1 */
__t1_framer_set(wc, 0x28, 0x00); /* XPM2 */
break;
case 2:
__t1_framer_set(wc, 0x26, 0x8c); /* XPM0 */
__t1_framer_set(wc, 0x27, 0x11); /* XPM1 */
__t1_framer_set(wc, 0x28, 0x01); /* XPM2 */
break;
case 1:
__t1_framer_set(wc, 0x26, 0x8c); /* XPM0 */
__t1_framer_set(wc, 0x27, 0x01); /* XPM1 */
__t1_framer_set(wc, 0x28, 0x00); /* XPM2 */
break;
case 0:
default:
__t1_framer_set(wc, 0x26, 0x1a); /* XPM0 */
__t1_framer_set(wc, 0x27, 0x1f); /* XPM1 */
__t1_framer_set(wc, 0x28, 0x01); /* XPM2 */
break;
}
spin_unlock_irqrestore(&wc->reglock, flags);
dev_info(&wc->dev->dev, "Span configured for %s/%s\n", framing, line);
}
static void t1_configure_e1(struct t13x *wc, int lineconfig)
{
unsigned int fmr2, fmr1, fmr0;
unsigned int cas = 0;
char *crc4 = "";
char *framing, *line;
unsigned long flags;
fmr1 = 0x44; /* FMR1: E1 mode, Automatic force resync, PCM30 mode,
8.192 Mhz backplane, no XAIS */
fmr2 = 0x03; /* FMR2: Auto transmit remote alarm, auto loss of
multiframe recovery, no payload loopback */
if (lineconfig & DAHDI_CONFIG_CRC4) {
fmr1 |= 0x08; /* CRC4 transmit */
fmr2 |= 0xc0; /* CRC4 receive */
crc4 = "/CRC4";
}
spin_lock_irqsave(&wc->reglock, flags);
__t1_framer_set(wc, 0x1d, fmr1);
__t1_framer_set(wc, 0x1e, fmr2);
/* Configure line interface */
if (lineconfig & DAHDI_CONFIG_AMI) {
line = "AMI";
fmr0 = 0xa0;
} else {
line = "HDB3";
fmr0 = 0xf0;
}
if (lineconfig & DAHDI_CONFIG_CCS) {
framing = "CCS";
} else {
framing = "CAS";
cas = 0x40;
}
__t1_framer_set(wc, 0x1c, fmr0);
__t1_framer_set(wc, 0x37, 0xf0); /* LIM1: Clear data in case of
LOS, Set receiver threshold
(0.5V), No remote loop, no
DRS */
__t1_framer_set(wc, 0x36, 0x08); /* LIM0: Enable auto long haul
mode, no local loop (must be
after LIM1) */
__t1_framer_set(wc, 0x02, 0x50); /* CMDR: Reset the receiver and
transmitter line interface
*/
__t1_framer_set(wc, 0x02, 0x00); /* CMDR: Reset the receiver and
transmitter line interface
*/
/* Condition receive line interface for E1 after reset */
__t1_framer_set(wc, 0xbb, 0x17);
__t1_framer_set(wc, 0xbc, 0x55);
__t1_framer_set(wc, 0xbb, 0x97);
__t1_framer_set(wc, 0xbb, 0x11);
__t1_framer_set(wc, 0xbc, 0xaa);
__t1_framer_set(wc, 0xbb, 0x91);
__t1_framer_set(wc, 0xbb, 0x12);
__t1_framer_set(wc, 0xbc, 0x55);
__t1_framer_set(wc, 0xbb, 0x92);
__t1_framer_set(wc, 0xbb, 0x0c);
__t1_framer_set(wc, 0xbb, 0x00);
__t1_framer_set(wc, 0xbb, 0x8c);
__t1_framer_set(wc, 0x3a, 0x20); /* LIM2: 50% peak amplitude is
a "1" */
__t1_framer_set(wc, 0x38, 0x0a); /* PCD: LOS after 176
consecutive "zeros" */
__t1_framer_set(wc, 0x39, 0x15); /* PCR: 22 "ones" clear LOS */
__t1_framer_set(wc, 0x20, 0x9f); /* XSW: Spare bits all to 1 */
__t1_framer_set(wc, 0x21, 0x1c|cas); /* XSP: E-bit set when async.
AXS auto, XSIF to 1 */
/* Generate pulse mask for E1 */
__t1_framer_set(wc, 0x26, 0x74); /* XPM0 */
__t1_framer_set(wc, 0x27, 0x02); /* XPM1 */
__t1_framer_set(wc, 0x28, 0x00); /* XPM2 */
spin_unlock_irqrestore(&wc->reglock, flags);
dev_info(&wc->dev->dev,
"Span configured for %s/%s%s\n", framing, line, crc4);
}
static void t1xxp_framer_start(struct t13x *wc)
{
if (dahdi_is_e1_span(&wc->span)) {
t1_configure_e1(wc, wc->span.lineconfig);
} else { /* is a T1 card */
t1_configure_t1(wc, wc->span.lineconfig, wc->span.txlevel);
__t1xxp_set_clear(wc);
}
set_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags);
}
static void set_span_devicetype(struct t13x *wc)
{
const char *olddevicetype;
olddevicetype = wc->ddev->devicetype;
#ifndef VPM_SUPPORT
wc->ddev->devicetype = kasprintf(GFP_KERNEL,
"%s (VPMOCT032)", wc->devtype->name);
#else
wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s", wc->devtype->name);
#endif /* VPM_SUPPORT */
/* On the off chance that we were able to allocate it previously. */
if (!wc->ddev->devicetype)
wc->ddev->devicetype = olddevicetype;
else
kfree(olddevicetype);
}
static int t1xxp_startup(struct file *file, struct dahdi_span *span)
{
struct t13x *wc = container_of(span, struct t13x, span);
set_span_devicetype(wc);
/* Reset framer with proper parameters and start */
t1xxp_framer_start(wc);
dev_info(&wc->dev->dev,
"Calling startup (flags is %lu)\n", span->flags);
return 0;
}
static inline bool is_initialized(struct t13x *wc)
{
WARN_ON(wc->not_ready < 0);
return (wc->not_ready == 0);
}
/**
* t1_wait_for_ready
*
* Check if the board has finished any setup and is ready to start processing
* calls.
*/
static int t1_wait_for_ready(struct t13x *wc)
{
while (!is_initialized(wc)) {
if (fatal_signal_pending(current))
return -EIO;
msleep_interruptible(250);
}
return 0;
}
static int t1xxp_chanconfig(struct file *file,
struct dahdi_chan *chan, int sigtype)
{
struct t13x *wc = chan->pvt;
if (file->f_flags & O_NONBLOCK && !is_initialized(wc))
return -EAGAIN;
else
t1_wait_for_ready(wc);
if (test_bit(DAHDI_FLAGBIT_RUNNING, &chan->span->flags) &&
dahdi_is_t1_span(&wc->span)) {
__t1xxp_set_clear(wc);
}
return 0;
}
static int t1xxp_rbsbits(struct dahdi_chan *chan, int bits)
{
u_char m, c;
int n, b;
struct t13x *wc = chan->pvt;
unsigned long flags;
if (dahdi_is_e1_span(&wc->span)) { /* do it E1 way */
if (chan->chanpos == 16)
return 0;
n = chan->chanpos - 1;
if (chan->chanpos > 15)
n--;
b = (n % 15);
spin_lock_irqsave(&wc->reglock, flags);
c = wc->txsigs[b];
m = (n / 15) << 2; /* nibble selector */
c &= (0xf << m); /* keep the other nibble */
c |= (bits & 0xf) << (4 - m); /* put our new nibble here */
wc->txsigs[b] = c;
/* output them to the chip */
__t1_framer_set(wc, 0x71 + b, c);
spin_unlock_irqrestore(&wc->reglock, flags);
} else if (wc->span.lineconfig & DAHDI_CONFIG_D4) {
n = chan->chanpos - 1;
b = (n / 4);
spin_lock_irqsave(&wc->reglock, flags);
c = wc->txsigs[b];
m = ((3 - (n % 4)) << 1); /* nibble selector */
c &= ~(0x3 << m); /* keep the other nibble */
c |= ((bits >> 2) & 0x3) << m; /* put our new nibble here */
wc->txsigs[b] = c;
/* output them to the chip */
__t1_framer_set(wc, 0x70 + b, c);
__t1_framer_set(wc, 0x70 + b + 6, c);
spin_unlock_irqrestore(&wc->reglock, flags);
} else if (wc->span.lineconfig & DAHDI_CONFIG_ESF) {
n = chan->chanpos - 1;
b = (n / 2);
spin_lock_irqsave(&wc->reglock, flags);
c = wc->txsigs[b];
m = ((n % 2) << 2); /* nibble selector */
c &= (0xf << m); /* keep the other nibble */
c |= (bits & 0xf) << (4 - m); /* put our new nibble here */
wc->txsigs[b] = c;
/* output them to the chip */
__t1_framer_set(wc, 0x70 + b, c);
spin_unlock_irqrestore(&wc->reglock, flags);
}
return 0;
}
static inline void t1_check_sigbits(struct t13x *wc)
{
int a, i, rxs;
if (!(test_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags)))
return;
if (dahdi_is_e1_span(&wc->span)) {
for (i = 0; i < 15; i++) {
a = t1_framer_get(wc, 0x71 + i);
if (a > -1) {
/* Get high channel in low bits */
rxs = (a & 0xf);
if (!(wc->span.chans[i+16]->sig & DAHDI_SIG_CLEAR))
if (wc->span.chans[i+16]->rxsig != rxs)
dahdi_rbsbits(wc->span.chans[i+16], rxs);
rxs = (a >> 4) & 0xf;
if (!(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR))
if (wc->span.chans[i]->rxsig != rxs)
dahdi_rbsbits(wc->span.chans[i], rxs);
}
}
} else if (wc->span.lineconfig & DAHDI_CONFIG_D4) {
for (i = 0; i < 24; i += 4) {
a = t1_framer_get(wc, 0x70 + (i>>2));
if (a > -1) {
/* Get high channel in low bits */
rxs = (a & 0x3) << 2;
if (!(wc->span.chans[i+3]->sig & DAHDI_SIG_CLEAR))
if (wc->span.chans[i+3]->rxsig != rxs)
dahdi_rbsbits(wc->span.chans[i+3], rxs);
rxs = (a & 0xc);
if (!(wc->span.chans[i+2]->sig & DAHDI_SIG_CLEAR))
if (wc->span.chans[i+2]->rxsig != rxs)
dahdi_rbsbits(wc->span.chans[i+2], rxs);
rxs = (a >> 2) & 0xc;
if (!(wc->span.chans[i+1]->sig & DAHDI_SIG_CLEAR))
if (wc->span.chans[i+1]->rxsig != rxs)
dahdi_rbsbits(wc->span.chans[i+1], rxs);
rxs = (a >> 4) & 0xc;
if (!(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR))
if (wc->span.chans[i]->rxsig != rxs)
dahdi_rbsbits(wc->span.chans[i], rxs);
}
}
} else {
for (i = 0; i < 24; i += 2) {
a = t1_framer_get(wc, 0x70 + (i>>1));
if (a > -1) {
/* Get high channel in low bits */
rxs = (a & 0xf);
if (!(wc->span.chans[i+1]->sig & DAHDI_SIG_CLEAR))
if (wc->span.chans[i+1]->rxsig != rxs)
dahdi_rbsbits(wc->span.chans[i+1], rxs);
rxs = (a >> 4) & 0xf;
if (!(wc->span.chans[i]->sig & DAHDI_SIG_CLEAR))
if (wc->span.chans[i]->rxsig != rxs)
dahdi_rbsbits(wc->span.chans[i], rxs);
}
}
}
}
struct maint_work_struct {
struct work_struct work;
struct t13x *wc;
int cmd;
struct dahdi_span *span;
};
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void t1xxp_maint_work(void *data)
{
struct maint_work_struct *w = data;
#else
static void t1xxp_maint_work(struct work_struct *work)
{
struct maint_work_struct *w = container_of(work,
struct maint_work_struct, work);
#endif
struct t13x *wc = w->wc;
struct dahdi_span *span = w->span;
int reg = 0;
int cmd = w->cmd;
unsigned long flags;
if (dahdi_is_e1_span(&wc->span)) {
switch (cmd) {
case DAHDI_MAINT_NONE:
dev_info(&wc->dev->dev, "Clearing all maint modes\n");
t1xxp_clear_maint(span);
break;
case DAHDI_MAINT_LOCALLOOP:
dev_info(&wc->dev->dev, "Turning on local loopback\n");
t1xxp_clear_maint(span);
spin_lock_irqsave(&wc->reglock, flags);
reg = __t1_framer_get(wc, LIM0);
if (reg < 0) {
spin_unlock_irqrestore(&wc->reglock, flags);
goto cleanup;
}
__t1_framer_set(wc, LIM0, reg | LIM0_LL);
spin_unlock_irqrestore(&wc->reglock, flags);
break;
case DAHDI_MAINT_NETWORKLINELOOP:
dev_info(&wc->dev->dev,
"Turning on network line loopback\n");
t1xxp_clear_maint(span);
spin_lock_irqsave(&wc->reglock, flags);
reg = __t1_framer_get(wc, LIM1);
if (reg < 0) {
spin_unlock_irqrestore(&wc->reglock, flags);
goto cleanup;
}
__t1_framer_set(wc, LIM1, reg | LIM1_RL);
spin_unlock_irqrestore(&wc->reglock, flags);
break;
case DAHDI_MAINT_NETWORKPAYLOADLOOP:
dev_info(&wc->dev->dev,
"Turning on network payload loopback\n");
t1xxp_clear_maint(span);
spin_lock_irqsave(&wc->reglock, flags);
reg = __t1_framer_get(wc, LIM1);
if (reg < 0) {
spin_unlock_irqrestore(&wc->reglock, flags);
goto cleanup;
}
__t1_framer_set(wc, LIM1, reg | (LIM1_RL | LIM1_JATT));
spin_unlock_irqrestore(&wc->reglock, flags);
break;
default:
dev_info(&wc->dev->dev,
"Unknown E1 maint command: %d\n", cmd);
goto cleanup;
}
} else {
switch (cmd) {
case DAHDI_MAINT_NONE:
dev_info(&wc->dev->dev, "Clearing all maint modes\n");
t1xxp_clear_maint(span);
break;
case DAHDI_MAINT_LOCALLOOP:
dev_info(&wc->dev->dev, "Turning on local loopback\n");
t1xxp_clear_maint(span);
spin_lock_irqsave(&wc->reglock, flags);
reg = __t1_framer_get(wc, LIM0);
if (reg < 0) {
spin_unlock_irqrestore(&wc->reglock, flags);
goto cleanup;
}
__t1_framer_set(wc, LIM0, reg | LIM0_LL);
spin_unlock_irqrestore(&wc->reglock, flags);
break;
case DAHDI_MAINT_NETWORKLINELOOP:
dev_info(&wc->dev->dev,
"Turning on network line loopback\n");
t1xxp_clear_maint(span);
spin_lock_irqsave(&wc->reglock, flags);
reg = __t1_framer_get(wc, LIM1);
if (reg < 0) {
spin_unlock_irqrestore(&wc->reglock, flags);
goto cleanup;
}
__t1_framer_set(wc, LIM1, reg | LIM1_RL);
spin_unlock_irqrestore(&wc->reglock, flags);
break;
case DAHDI_MAINT_NETWORKPAYLOADLOOP:
dev_info(&wc->dev->dev,
"Turning on network payload loopback\n");
t1xxp_clear_maint(span);
spin_lock_irqsave(&wc->reglock, flags);
reg = __t1_framer_get(wc, LIM1);
if (reg < 0) {
spin_unlock_irqrestore(&wc->reglock, flags);
goto cleanup;
}
__t1_framer_set(wc, LIM1, reg | (LIM1_RL | LIM1_JATT));
spin_unlock_irqrestore(&wc->reglock, flags);
break;
case DAHDI_MAINT_LOOPUP:
dev_info(&wc->dev->dev, "Transmitting loopup code\n");
t1xxp_clear_maint(span);
t1_framer_set(wc, 0x21, 0x50);
break;
case DAHDI_MAINT_LOOPDOWN:
dev_info(&wc->dev->dev, "Transmitting loopdown code\n");
t1xxp_clear_maint(span);
t1_framer_set(wc, 0x21, 0x60);
break;
default:
dev_info(&wc->dev->dev,
"Unknown T1 maint command: %d\n", cmd);
return;
}
}
cleanup:
kfree(w);
return;
}
static int t1xxp_maint(struct dahdi_span *span, int cmd)
{
struct maint_work_struct *work;
struct t13x *wc = container_of(span, struct t13x, span);
if (dahdi_is_e1_span(&wc->span)) {
switch (cmd) {
case DAHDI_MAINT_NONE:
case DAHDI_MAINT_LOCALLOOP:
case DAHDI_MAINT_NETWORKLINELOOP:
case DAHDI_MAINT_NETWORKPAYLOADLOOP:
break;
case DAHDI_MAINT_LOOPUP:
case DAHDI_MAINT_LOOPDOWN:
dev_info(&wc->dev->dev,
"Only local loop supported in E1 mode\n");
return -ENOSYS;
default:
dev_info(&wc->dev->dev,
"Unknown E1 maint command: %d\n", cmd);
return -ENOSYS;
}
} else {
switch (cmd) {
case DAHDI_MAINT_NONE:
case DAHDI_MAINT_LOCALLOOP:
case DAHDI_MAINT_NETWORKLINELOOP:
case DAHDI_MAINT_NETWORKPAYLOADLOOP:
case DAHDI_MAINT_LOOPUP:
case DAHDI_MAINT_LOOPDOWN:
break;
default:
dev_info(&wc->dev->dev,
"Unknown T1 maint command: %d\n", cmd);
return -ENOSYS;
}
}
work = kzalloc(sizeof(*work), GFP_ATOMIC);
if (!work) {
dev_info(&wc->dev->dev,
"Failed to allocate memory for workqueue\n");
return -ENOMEM;
}
work->span = span;
work->wc = wc;
work->cmd = cmd;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&work->work, t1xxp_maint_work, work);
#else
INIT_WORK(&work->work, t1xxp_maint_work);
#endif
queue_work(wc->wq, &work->work);
return 0;
}
static int t1xxp_clear_maint(struct dahdi_span *span)
{
struct t13x *wc = container_of(span, struct t13x, span);
int reg = 0;
unsigned long flags;
/* Turn off local loop */
spin_lock_irqsave(&wc->reglock, flags);
reg = __t1_framer_get(wc, LIM0);
if (reg < 0) {
spin_unlock_irqrestore(&wc->reglock, flags);
return -EIO;
}
__t1_framer_set(wc, LIM0, reg & ~LIM0_LL);
/* Turn off remote loop & jitter attenuator */
reg = __t1_framer_get(wc, LIM1);
if (reg < 0) {
spin_unlock_irqrestore(&wc->reglock, flags);
return -EIO;
}
__t1_framer_set(wc, LIM1, reg & ~(LIM1_RL | LIM1_JATT));
/* Clear loopup/loopdown signals on the line */
__t1_framer_set(wc, 0x21, 0x40);
spin_unlock_irqrestore(&wc->reglock, flags);
return 0;
}
static int t1xxp_ioctl(struct dahdi_chan *chan, unsigned int cmd,
unsigned long data)
{
struct t4_regs regs;
unsigned int x;
struct t13x *wc;
switch (cmd) {
case WCT4_GET_REGS:
wc = chan->pvt;
for (x = 0; x < sizeof(regs.regs) / sizeof(regs.regs[0]); x++)
regs.regs[x] = t1_framer_get(wc, x);
if (copy_to_user((void __user *) data, &regs, sizeof(regs)))
return -EFAULT;
break;
default:
return -ENOTTY;
}
return 0;
}
static void t1_chan_set_sigcap(struct dahdi_span *span, int x)
{
struct t13x *wc = container_of(span, struct t13x, span);
struct dahdi_chan *chan = wc->chans[x];
chan->sigcap = DAHDI_SIG_CLEAR;
/* E&M variant supported depends on span type */
if (dahdi_is_e1_span(&wc->span)) {
/* E1 sigcap setup */
if (span->lineconfig & DAHDI_CONFIG_CCS) {
/* CCS setup */
chan->sigcap |= DAHDI_SIG_MTP2 | DAHDI_SIG_SF;
return;
}
/* clear out sig and sigcap for channel 16 on E1 CAS
* lines, otherwise, set it correctly */
if (x == 15) {
/* CAS signaling channel setup */
wc->chans[15]->sigcap = 0;
wc->chans[15]->sig = 0;
return;
}
/* normal CAS setup */
chan->sigcap |= DAHDI_SIG_EM_E1 | DAHDI_SIG_FXSLS |
DAHDI_SIG_FXSGS | DAHDI_SIG_FXSKS | DAHDI_SIG_SF |
DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_FXOKS |
DAHDI_SIG_CAS | DAHDI_SIG_DACS_RBS;
} else {
/* T1 sigcap setup */
chan->sigcap |= DAHDI_SIG_EM | DAHDI_SIG_FXSLS |
DAHDI_SIG_FXSGS | DAHDI_SIG_FXSKS | DAHDI_SIG_MTP2 |
DAHDI_SIG_SF | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS |
DAHDI_SIG_FXOKS | DAHDI_SIG_CAS | DAHDI_SIG_DACS_RBS;
}
}
static int
t1xxp_spanconfig(struct file *file, struct dahdi_span *span,
struct dahdi_lineconfig *lc)
{
struct t13x *wc = container_of(span, struct t13x, span);
int i, reg;
if (file->f_flags & O_NONBLOCK) {
if (!is_initialized(wc))
return -EAGAIN;
} else {
t1_wait_for_ready(wc);
}
reg = ioread32be(wc->membase + TDM_CONTROL);
iowrite32be(reg & ~ENABLE_DMA, wc->membase+TDM_CONTROL);
msleep(200);
/* Do we want to SYNC on receive or not */
if (lc->sync) {
reg = ioread32be(wc->membase + TDM_CONTROL);
iowrite32be(reg | TDM_RECOVER_CLOCK, wc->membase+TDM_CONTROL);
span->syncsrc = span->spanno;
} else {
reg = ioread32be(wc->membase + TDM_CONTROL);
iowrite32be(reg & ~TDM_RECOVER_CLOCK, wc->membase+TDM_CONTROL);
span->syncsrc = 0;
}
reset_dring(wc);
reg = ioread32be(wc->membase + TDM_CONTROL);
iowrite32be(reg | ENABLE_DMA, wc->membase+TDM_CONTROL);
/* make sure that sigcaps gets updated if necessary */
for (i = 0; i < wc->span.channels; i++)
t1_chan_set_sigcap(span, i);
/* If already running, apply changes immediately */
if (test_bit(DAHDI_FLAGBIT_RUNNING, &span->flags))
return t1xxp_startup(file, span);
return 0;
}
/**
* t1_software_init - Initialize the board for the given type.
* @wc: The board to initialize.
* @type: The type of board we are, T1 / E1
*
* This function is called at startup and when the type of the span is changed
* via the dahdi_device before the span is assigned a number.
*
*/
static int t1_software_init(struct t13x *wc, enum linemode type)
{
int x;
struct dahdi_chan *chans[32] = {NULL,};
struct dahdi_echocan_state *ec[32] = {NULL,};
unsigned long flags;
int res = 0;
/* We may already be setup properly. */
if (wc->span.channels == ((E1 == type) ? 31 : 24))
return 0;
for (x = 0; x < ((E1 == type) ? 31 : 24); x++) {
chans[x] = kzalloc(sizeof(*chans[x]), GFP_KERNEL);
ec[x] = kzalloc(sizeof(*ec[x]), GFP_KERNEL);
if (!chans[x] || !ec[x])
goto error_exit;
}
set_span_devicetype(wc);
/* Because the interrupt handler is running, we need to atomically
* swap the channel arrays. */
spin_lock_irqsave(&wc->reglock, flags);
_t1_free_channels(wc);
memcpy(wc->chans, chans, sizeof(wc->chans));
memcpy(wc->ec, ec, sizeof(wc->ec));
memset(chans, 0, sizeof(chans));
memset(ec, 0, sizeof(ec));
switch (type) {
case E1:
wc->span.channels = 31;
wc->span.spantype = SPANTYPE_DIGITAL_E1;
wc->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_HDB3 |
DAHDI_CONFIG_CCS | DAHDI_CONFIG_CRC4;
wc->span.deflaw = DAHDI_LAW_ALAW;
break;
case T1:
wc->span.channels = 24;
wc->span.spantype = SPANTYPE_DIGITAL_T1;
wc->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_B8ZS |
DAHDI_CONFIG_D4 | DAHDI_CONFIG_ESF;
wc->span.deflaw = DAHDI_LAW_MULAW;
break;
case J1:
wc->span.channels = 24;
wc->span.spantype = SPANTYPE_DIGITAL_J1;
wc->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_B8ZS |
DAHDI_CONFIG_D4 | DAHDI_CONFIG_ESF;
wc->span.deflaw = DAHDI_LAW_MULAW;
break;
default:
spin_unlock_irqrestore(&wc->reglock, flags);
res = -EINVAL;
goto error_exit;
}
spin_unlock_irqrestore(&wc->reglock, flags);
dev_info(&wc->dev->dev, "Setting up global serial parameters for %s\n",
dahdi_spantype2str(wc->span.spantype));
t4_serial_setup(wc);
set_bit(DAHDI_FLAGBIT_RBS, &wc->span.flags);
for (x = 0; x < wc->span.channels; x++) {
sprintf(wc->chans[x]->name, "%s/%d", wc->span.name, x + 1);
t1_chan_set_sigcap(&wc->span, x);
wc->chans[x]->pvt = wc;
wc->chans[x]->chanpos = x + 1;
}
set_span_devicetype(wc);
return 0;
error_exit:
for (x = 0; x < ARRAY_SIZE(chans); ++x) {
kfree(chans[x]);
kfree(ec[x]);
}
return res;
}
/**
* t1xx_set_linemode - Change the type of span before assignment.
* @span: The span to change.
* @linemode: Text string for the line mode.
*
* This function may be called after the dahdi_device is registered but
* before the spans are assigned numbers (and are visible to the rest of
* DAHDI).
*
*/
static int t1xxp_set_linemode(struct dahdi_span *span, enum spantypes linemode)
{
int res;
struct t13x *wc = container_of(span, struct t13x, span);
u32 saved_ier;
/* We may already be set to the requested type. */
if (span->spantype == linemode)
return 0;
res = t1_wait_for_ready(wc);
if (res)
return res;
saved_ier = ioread32be(wc->membase + IER);
mutex_lock(&wc->lock);
/* Stop the processing of the channels since we're going to change
* them. */
clear_bit(INITIALIZED, &wc->bit_flags);
iowrite32be(0, wc->membase + IER);
synchronize_irq(wc->dev->irq);
smp_mb__after_clear_bit();
del_timer_sync(&wc->timer);
flush_workqueue(wc->wq);
t1_framer_reset(wc);
t4_serial_setup(wc);
switch (linemode) {
case SPANTYPE_DIGITAL_T1:
dev_info(&wc->dev->dev,
"Changing from %s to T1 line mode.\n",
dahdi_spantype2str(wc->span.spantype));
res = t1_software_init(wc, T1);
break;
case SPANTYPE_DIGITAL_E1:
dev_info(&wc->dev->dev,
"Changing from %s to E1 line mode.\n",
dahdi_spantype2str(wc->span.spantype));
res = t1_software_init(wc, E1);
break;
case SPANTYPE_DIGITAL_J1:
dev_info(&wc->dev->dev,
"Changing from %s to E1 line mode.\n",
dahdi_spantype2str(wc->span.spantype));
res = t1_software_init(wc, J1);
default:
dev_err(&wc->dev->dev,
"Got invalid linemode '%s' from dahdi\n",
dahdi_spantype2str(linemode));
res = -EINVAL;
}
/* Since we probably reallocated the channels we need to make
* sure they are configured before setting INITIALIZED again. */
if (!res) {
dahdi_init_span(span);
set_bit(INITIALIZED, &wc->bit_flags);
mod_timer(&wc->timer, jiffies + HZ/5);
}
/* The LATENCY_LOCKED auto-clears the first interrupt
* after it was set. This prevents the driver from bumping up
* the latency after we disabled interrupts while reconfiguring
* the board. */
set_bit(LATENCY_LOCKED, &wc->bit_flags);
iowrite32be(saved_ier, wc->membase + IER);
mutex_unlock(&wc->lock);
return res;
}
static int t1_hardware_post_init(struct t13x *wc, enum linemode *type)
{
int reg;
int x;
if (!strcasecmp(default_linemode, "e1")) {
*type = E1;
} else if (!strcasecmp(default_linemode, "t1")) {
*type = T1;
} else if (!strcasecmp(default_linemode, "j1")) {
*type = J1;
} else {
dev_warn(&wc->dev->dev,
"'%s' is an unknown linemode. Defaulting to 't1'\n",
default_linemode);
*type = T1;
}
if (debug) {
dev_info(&wc->dev->dev, "linemode: %s\n",
(*type == T1) ? "T1" : ((J1 == *type) ? "J1" : "E1"));
}
/* what version of the FALC are we using? */
reg = ioread32be(wc->membase);
iowrite32be(reg | FALC_CPU_RESET, wc->membase);
reg = t1_framer_get(wc, 0x4a);
if (reg < 0) {
dev_info(&wc->dev->dev,
"Failed to read FALC version (%x)\n", reg);
return -EIO;
}
dev_info(&wc->dev->dev, "FALC version: %1x\n", reg);
/* make sure reads and writes work */
for (x = 0; x < 256; x++) {
t1_framer_set(wc, 0x14, x);
reg = t1_framer_get(wc, 0x14);
if (reg < 0) {
dev_info(&wc->dev->dev,
"Failed register read (%d)\n", reg);
return -EIO;
}
if (reg != x) {
dev_info(&wc->dev->dev,
"Register test failed. Wrote '%x' but read '%x'\n",
x, reg);
return -EIO;
}
}
/* Enable all the GPIO outputs. */
t1_setleds(wc, wc->ledstate);
return 0;
}
static inline void t1_check_alarms(struct t13x *wc)
{
unsigned char c, d;
int alarms;
int x, j;
unsigned char fmr4; /* must read this always */
if (!(test_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags)))
return;
c = t1_framer_get(wc, 0x4c);
fmr4 = t1_framer_get(wc, 0x20); /* must read this */
d = t1_framer_get(wc, 0x4d);
/* Assume no alarms */
alarms = 0;
/* And consider only carrier alarms */
wc->span.alarms &= (DAHDI_ALARM_RED | DAHDI_ALARM_BLUE |
DAHDI_ALARM_NOTOPEN);
if (dahdi_is_e1_span(&wc->span)) {
if (c & 0x04) {
/* No multiframe found, force RAI high after 400ms only
* if we haven't found a multiframe since last loss of
* frame */
if (!wc->flags.nmf) {
/* LIM0: Force RAI High */
t1_framer_set(wc, 0x20, 0x9f | 0x20);
wc->flags.nmf = 1;
dev_info(&wc->dev->dev, "NMF workaround on!\n");
}
t1_framer_set(wc, 0x1e, 0xc3); /* Reset to CRC4 mode */
t1_framer_set(wc, 0x1c, 0xf2); /* Force Resync */
t1_framer_set(wc, 0x1c, 0xf0); /* Force Resync */
} else if (!(c & 0x02)) {
if (wc->flags.nmf) {
/* LIM0: Clear forced RAI */
t1_framer_set(wc, 0x20, 0x9f);
wc->flags.nmf = 0;
dev_info(&wc->dev->dev,
"NMF workaround off!\n");
}
}
} else {
/* Detect loopup code if we're not sending one */
if ((!wc->span.mainttimer) && (d & 0x08)) {
/* Loop-up code detected */
if ((++wc->loopupcnt > 80) &&
(wc->span.maintstat != DAHDI_MAINT_REMOTELOOP)) {
dev_info(&wc->dev->dev, "Loopup detected,"\
" enabling remote loop\n");
/* LIM0: Disable any local loop */
t1_framer_set(wc, 0x36, 0x08);
/* LIM1: Enable remote loop */
t1_framer_set(wc, 0x37, 0xf6);
wc->span.maintstat = DAHDI_MAINT_REMOTELOOP;
}
} else {
wc->loopupcnt = 0;
}
/* Same for loopdown code */
if ((!wc->span.mainttimer) && (d & 0x10)) {
/* Loop-down code detected */
if ((++wc->loopdowncnt > 80) &&
(wc->span.maintstat == DAHDI_MAINT_REMOTELOOP)) {
dev_info(&wc->dev->dev, "Loopdown detected,"\
" disabling remote loop\n");
/* LIM0: Disable any local loop */
t1_framer_set(wc, 0x36, 0x08);
/* LIM1: Disable remote loop */
t1_framer_set(wc, 0x37, 0xf0);
wc->span.maintstat = DAHDI_MAINT_NONE;
}
} else {
wc->loopdowncnt = 0;
}
}
if (wc->span.lineconfig & DAHDI_CONFIG_NOTOPEN) {
for (x = 0, j = 0; x < wc->span.channels; x++)
if ((wc->span.chans[x]->flags & DAHDI_FLAG_OPEN) ||
dahdi_have_netdev(wc->span.chans[x]))
j++;
if (!j)
alarms |= DAHDI_ALARM_NOTOPEN;
}
if (c & 0x20) { /* LOF/LFA */
if (wc->alarmcount >= (alarmdebounce/100))
alarms |= DAHDI_ALARM_RED;
else {
if (unlikely(debug && !wc->alarmcount)) {
/* starting to debounce LOF/LFA */
dev_info(&wc->dev->dev,
"LOF/LFA detected but debouncing for %d ms\n",
alarmdebounce);
}
wc->alarmcount++;
}
} else
wc->alarmcount = 0;
if (c & 0x80) { /* LOS */
if (wc->losalarmcount >= (losalarmdebounce/100))
alarms |= DAHDI_ALARM_RED;
else {
if (unlikely(debug && !wc->losalarmcount)) {
/* starting to debounce LOS */
dev_info(&wc->dev->dev,
"LOS detected but debouncing for %d ms\n",
losalarmdebounce);
}
wc->losalarmcount++;
}
} else
wc->losalarmcount = 0;
if (c & 0x40) { /* AIS */
if (wc->aisalarmcount >= (aisalarmdebounce/100))
alarms |= DAHDI_ALARM_BLUE;
else {
if (unlikely(debug && !wc->aisalarmcount)) {
/* starting to debounce AIS */
dev_info(&wc->dev->dev,
"AIS detected but debouncing for %d ms\n",
aisalarmdebounce);
}
wc->aisalarmcount++;
}
} else
wc->aisalarmcount = 0;
/* Keep track of recovering */
if ((!alarms) && wc->span.alarms)
wc->alarmtimer = jiffies + 5*HZ;
if (wc->alarmtimer)
alarms |= DAHDI_ALARM_RECOVER;
/* If receiving alarms, go into Yellow alarm state */
if (alarms && !wc->flags.sendingyellow) {
dev_info(&wc->dev->dev, "Setting yellow alarm\n");
/* We manually do yellow alarm to handle RECOVER and NOTOPEN,
* otherwise it's auto anyway */
t1_framer_set(wc, 0x20, fmr4 | 0x20);
wc->flags.sendingyellow = 1;
} else if (!alarms && wc->flags.sendingyellow) {
dev_info(&wc->dev->dev, "Clearing yellow alarm\n");
/* We manually do yellow alarm to handle RECOVER */
t1_framer_set(wc, 0x20, fmr4 & ~0x20);
wc->flags.sendingyellow = 0;
}
/*
if ((c & 0x10))
alarms |= DAHDI_ALARM_YELLOW;
*/
if (c & 0x10) { /* receiving yellow (RAI) */
if (wc->yelalarmcount >= (yelalarmdebounce/100))
alarms |= DAHDI_ALARM_YELLOW;
else {
if (unlikely(debug && !wc->yelalarmcount)) {
/* starting to debounce AIS */
dev_info(&wc->dev->dev,
"yellow (RAI) detected but debouncing for %d ms\n",
yelalarmdebounce);
}
wc->yelalarmcount++;
}
} else
wc->yelalarmcount = 0;
if (wc->span.mainttimer || wc->span.maintstat)
alarms |= DAHDI_ALARM_LOOPBACK;
wc->span.alarms = alarms;
dahdi_alarm_notify(&wc->span);
}
static void handle_leds(struct t13x *wc)
{
u32 led;
unsigned long flags;
#define SET_LED_RED(a) ((a | STATUS_LED_RED) & ~STATUS_LED_GREEN)
#define SET_LED_GREEN(a) ((a | STATUS_LED_GREEN) & ~STATUS_LED_RED)
#define UNSET_LED_REDGREEN(a) (a & ~(STATUS_LED_RED | STATUS_LED_GREEN))
#define SET_LED_YELLOW(a) (a | STATUS_LED_RED | STATUS_LED_GREEN)
led = wc->ledstate;
if ((wc->span.alarms & (DAHDI_ALARM_RED | DAHDI_ALARM_BLUE))
|| wc->losalarmcount) {
/* When we're in red alarm, blink the led once a second. */
if (time_after(jiffies, wc->blinktimer)) {
led = (led & STATUS_LED_RED) ? UNSET_LED_REDGREEN(led) :
SET_LED_RED(led);
}
} else if (wc->span.alarms & DAHDI_ALARM_YELLOW) {
led = SET_LED_YELLOW(led);
} else {
if (test_bit(DAHDI_FLAGBIT_RUNNING, &wc->span.flags))
led = SET_LED_GREEN(led);
else
led = UNSET_LED_REDGREEN(led);
}
if (led != wc->ledstate) {
wc->blinktimer = jiffies + HZ/2;
/* TODO: write blinktimer to register */
spin_lock_irqsave(&wc->reglock, flags);
wc->ledstate = led;
spin_unlock_irqrestore(&wc->reglock, flags);
t1_setleds(wc, led);
}
}
static void t1_do_counters(struct t13x *wc)
{
if (wc->alarmtimer && time_after(jiffies, wc->alarmtimer)) {
wc->span.alarms &= ~(DAHDI_ALARM_RECOVER);
wc->alarmtimer = 0;
dahdi_alarm_notify(&wc->span);
}
}
/* Called once at startup, the number of tx and rx buffs may grow
* during runtime, but these heaps stay the same */
static int alloc_dring(struct t13x *wc)
{
wc->meta_dring =
kzalloc(sizeof(struct t13x_meta_desc) * DRING_SIZE,
GFP_KERNEL);
if (!wc->meta_dring)
return -ENOMEM;
wc->hw_dring = dma_alloc_coherent(&wc->dev->dev,
sizeof(struct t13x_hw_desc) * DRING_SIZE,
&wc->hw_dring_phys,
GFP_KERNEL);
if (!wc->hw_dring) {
kfree(wc->meta_dring);
return -ENOMEM;
}
wc->pool = dma_pool_create(wc->name, &wc->dev->dev,
PAGE_SIZE, PAGE_SIZE, 0);
if (!wc->pool) {
kfree(wc->meta_dring);
dma_free_coherent(&wc->dev->dev,
sizeof(struct t13x_hw_desc) * DRING_SIZE,
wc->hw_dring,
wc->hw_dring_phys);
return -ENOMEM;
}
return 0;
}
static void free_dring(struct t13x *wc)
{
struct t13x_meta_desc *mdesc;
struct t13x_hw_desc *hdesc;
int i;
/* Free tx/rx buffs */
for (i = 0; i < DRING_SIZE; i++) {
mdesc = &wc->meta_dring[i];
hdesc = &wc->hw_dring[i];
if (mdesc->tx_buf_virt) {
dma_pool_free(wc->pool,
mdesc->tx_buf_virt,
be32_to_cpu(hdesc->tx_buf));
dma_pool_free(wc->pool,
mdesc->rx_buf_virt,
be32_to_cpu(hdesc->rx_buf));
}
}
dma_pool_destroy(wc->pool);
dma_free_coherent(&wc->dev->dev,
sizeof(struct t13x_hw_desc) * DRING_SIZE,
wc->hw_dring,
wc->hw_dring_phys);
kfree(wc->meta_dring);
}
/* Sets up all DMA read/write chunks up to size wc->latency */
static void reset_dring(struct t13x *wc)
{
int x;
struct t13x_meta_desc *mdesc;
struct t13x_hw_desc *hdesc = NULL;
wc->dma_head = wc->dma_tail = 0;
if (unlikely(wc->latency > DRING_SIZE)) {
dev_info(&wc->dev->dev,
"Oops! Tried to increase latency past buffer size.\n");
wc->latency = DRING_SIZE;
}
for (x = 0; x < wc->latency; x++) {
dma_addr_t dma_tmp;
mdesc = &wc->meta_dring[x];
hdesc = &wc->hw_dring[x];
hdesc->status = cpu_to_be32(DESC_DEFAULT_STATUS);
if (!mdesc->tx_buf_virt) {
mdesc->tx_buf_virt =
dma_pool_alloc(wc->pool, GFP_ATOMIC, &dma_tmp);
hdesc->tx_buf = cpu_to_be32(dma_tmp);
mdesc->rx_buf_virt =
dma_pool_alloc(wc->pool, GFP_ATOMIC, &dma_tmp);
hdesc->rx_buf = cpu_to_be32(dma_tmp);
}
hdesc->control = cpu_to_be32(DESC_INT|DESC_OWN);
BUG_ON(!mdesc->tx_buf_virt || !mdesc->rx_buf_virt);
}
BUG_ON(!hdesc);
/* Set end of ring bit in last descriptor to force hw to loop around */
hdesc->control |= cpu_to_be32(DESC_EOR);
iowrite32be(wc->hw_dring_phys, wc->membase + TDM_DRING_ADDR);
}
static void handle_dma(struct t13x *wc)
{
struct t13x_meta_desc *mdesc;
int i, j;
while (!(wc->hw_dring[wc->dma_tail].control & cpu_to_be32(DESC_OWN))) {
u_char *frame;
mdesc = &wc->meta_dring[wc->dma_tail];
frame = mdesc->rx_buf_virt;
for (j = 0; j < DAHDI_CHUNKSIZE; j++)
for (i = 0; i < wc->span.channels; i++)
wc->chans[i]->readchunk[j] =
frame[j*DMA_CHAN_SIZE+(1+i*4)];
if (0 == vpmsupport) {
for (i = 0; i < wc->span.channels; i++) {
struct dahdi_chan *const c = wc->span.chans[i];
__dahdi_ec_chunk(c, c->readchunk, c->readchunk,
c->writechunk);
}
}
_dahdi_receive(&wc->span);
wc->dma_tail =
(wc->dma_tail == wc->latency-1) ? 0 : wc->dma_tail + 1;
mdesc = &wc->meta_dring[wc->dma_head];
frame = mdesc->tx_buf_virt;
_dahdi_transmit(&wc->span);
for (j = 0; j < DAHDI_CHUNKSIZE; j++)
for (i = 0; i < wc->span.channels; i++)
frame[j*DMA_CHAN_SIZE+(1+i*4)] =
wc->chans[i]->writechunk[j];
wmb();
wc->hw_dring[wc->dma_head].control |= cpu_to_be32(DESC_OWN);
wc->dma_head =
(wc->dma_head == wc->latency-1) ? 0 : wc->dma_head + 1;
}
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
static void timer_work_func(void *param)
{
struct t13x *wc = param;
#else
static void timer_work_func(struct work_struct *work)
{
struct t13x *wc = container_of(work, struct t13x, timer_work);
#endif
t1_do_counters(wc);
t1_check_alarms(wc);
t1_check_sigbits(wc);
handle_leds(wc);
if (test_bit(INITIALIZED, &wc->bit_flags))
mod_timer(&wc->timer, jiffies + HZ/30);
}
static irqreturn_t _te13xp_isr(int irq, void *dev_id)
{
struct t13x *wc = dev_id;
u32 pending;
pending = ioread32be(wc->membase + ISR);
if (!pending)
return IRQ_NONE;
if (pending & DESC_UNDERRUN) {
if (!test_bit(LATENCY_LOCKED, &wc->bit_flags)) {
/* bump latency */
wc->latency++;
dev_info(&wc->dev->dev,
"Underrun detected by hardware. Latency bumped to: %dms\n",
wc->latency);
} else {
clear_bit(LATENCY_LOCKED, &wc->bit_flags);
}
/* re-setup dma ring */
reset_dring(wc);
/* set dma enable bit */
iowrite32be(ENABLE_DMA,
wc->membase + TDM_CONTROL);
/* acknowledge underrun interrupt */
iowrite32be(DESC_UNDERRUN, wc->membase + IAR);
}
if (pending & DESC_COMPLETE) {
wc->framecount++;
handle_dma(wc);
iowrite32be(DESC_COMPLETE, wc->membase + IAR);
}
ioread32be(wc->membase + ISR);
return IRQ_HANDLED;
}
DAHDI_IRQ_HANDLER(te13xp_isr)
{
irqreturn_t ret;
unsigned long flags;
local_irq_save(flags);
ret = _te13xp_isr(irq, dev_id);
local_irq_restore(flags);
return ret;
}
static void te13xp_timer(unsigned long data)
{
struct t13x *wc = (struct t13x *)data;
if (unlikely(!test_bit(INITIALIZED, &wc->bit_flags)))
return;
queue_work(wc->wq, &wc->timer_work);
return;
}
static inline void create_sysfs_files(struct t13x *wc) { return; }
static inline void remove_sysfs_files(struct t13x *wc) { return; }
static const struct dahdi_span_ops t1_span_ops = {
.owner = THIS_MODULE,
.spanconfig = t1xxp_spanconfig,
.chanconfig = t1xxp_chanconfig,
.startup = t1xxp_startup,
.rbsbits = t1xxp_rbsbits,
.maint = t1xxp_maint,
.ioctl = t1xxp_ioctl,
.set_spantype = t1xxp_set_linemode,
#ifdef VPM_SUPPORT
.echocan_create = t13x_echocan_create,
.echocan_name = t13x_echocan_name,
#endif /* VPM_SUPPORT */
};
/**
* te13xp_check_for_interrupts - Return 0 if the card is generating interrupts.
* @wc: The card to check.
*
* If the card is not generating interrupts, this function will also place all
* the spans on the card into red alarm.
*
*/
static int te13xp_check_for_interrupts(struct t13x *wc)
{
unsigned int starting_framecount = wc->framecount;
unsigned long stop_time = jiffies + HZ*2;
unsigned long flags;
msleep(20);
spin_lock_irqsave(&wc->reglock, flags);
while (starting_framecount == wc->framecount) {
spin_unlock_irqrestore(&wc->reglock, flags);
if (time_after(jiffies, stop_time)) {
wc->span.alarms = DAHDI_ALARM_RED;
dev_err(&wc->dev->dev, "Interrupts not detected.\n");
return -EIO;
}
msleep(100);
spin_lock_irqsave(&wc->reglock, flags);
}
spin_unlock_irqrestore(&wc->reglock, flags);
return 0;
}
#define SPI_BASE 0x200
#define SPISRR (SPI_BASE + 0x40)
#define SPICR (SPI_BASE + 0x60)
#define SPISR (SPI_BASE + 0x64)
#define SPIDTR (SPI_BASE + 0x68)
#define SPIDRR (SPI_BASE + 0x6c)
#define SPISSR (SPI_BASE + 0x70)
static void flash_write(struct t13x *wc, int val)
{
u32 ret;
unsigned long stop = jiffies + HZ/10;
/* Wait if xmit fifo is full */
do {
ret = ioread32be(wc->membase + SPISR);
} while ((ret & 0x08) && time_before(jiffies, stop));
WARN_ON_ONCE(time_after_eq(jiffies, stop));
iowrite32be(val, wc->membase + SPIDTR);
}
static int flash_read(struct t13x *wc)
{
u32 ret;
unsigned long stop = jiffies + HZ/10;
do {
ret = ioread32be(wc->membase + SPISR);
} while ((ret & 0x01) && time_before(jiffies, stop));
WARN_ON_ONCE(time_after_eq(jiffies, stop));
return ioread32be(wc->membase + SPIDRR);
}
/* Busy wait until the transmit fifo is flushed
* This was implemented to slow down a race condition with
* a chip select deassertion before flash command transmission
*/
static void clear_xmit_fifo(struct t13x *wc)
{
u32 ret;
unsigned long stop = jiffies + HZ/100;
do {
ret = ioread32be(wc->membase + SPISR);
} while (!(ret & 0x4) && time_before(jiffies, stop));
WARN_ON_ONCE(time_after_eq(jiffies, stop));
}
static void chip_select(struct t13x *wc, int slave)
{
if (slave)
iowrite32be(0xfffffffe, wc->membase + SPISSR);
else
iowrite32be(0xffffffff, wc->membase + SPISSR);
}
static void clear_busy(struct t13x *wc)
{
unsigned long stop = jiffies + HZ/10;
chip_select(wc, 0);
iowrite32be(0x186, wc->membase + SPICR);
chip_select(wc, 1);
iowrite32be(0x086, wc->membase + SPICR);
flash_write(wc, 0x05);
clear_xmit_fifo(wc);
flash_read(wc);
do {
flash_write(wc, 0xff);
} while ((flash_read(wc) & 0x01) && time_before(jiffies, stop));
WARN_ON_ONCE(time_after_eq(jiffies, stop));
chip_select(wc, 0);
}
static void write_enable(struct t13x *wc)
{
iowrite32be(0xa, wc->membase + SPISRR);
msleep(10);
flash_write(wc, 0x06);
chip_select(wc, 0);
iowrite32be(0x186, wc->membase + SPICR);
chip_select(wc, 1);
iowrite32be(0x086, wc->membase + SPICR);
clear_xmit_fifo(wc);
chip_select(wc, 0);
flash_read(wc);
clear_busy(wc);
}
static void clear_flash_wip(struct t13x *wc)
{
/* Hold here until flash chip is done writing */
iowrite32be(0xe6, wc->membase + SPICR);
chip_select(wc, 1);
flash_write(wc, 0x05);
flash_write(wc, 0xff);
do { } while (!(ioread32be(wc->membase + SPISR) & 0x04));
flash_read(wc);
while (flash_read(wc) & 0x1)
flash_write(wc, 0xff);
chip_select(wc, 0);
}
static void erase_64kb_sector(struct t13x *wc, int offset)
{
iowrite32be(0xe6, wc->membase + SPICR);
chip_select(wc, 1);
flash_write(wc, 0xd8);
flash_write(wc, (offset >> 16) & 0xff);
flash_write(wc, 0x00);
flash_write(wc, 0x00);
do { } while (!(ioread32be(wc->membase + SPISR) & 0x04));
chip_select(wc, 0);
clear_flash_wip(wc);
}
static int t13x_get_firmware_version(struct t13x *wc)
{
u32 version = 0;
/* Two version registers are read and catenated into one */
/* Firmware version goes in bits upper byte */
version = ((ioread32be(wc->membase + 0x400) & 0xffff)<<16);
/* Microblaze version goes in lower word */
version += ioread32be(wc->membase + 0x2018);
return version;
}
static int t13x_update_firmware(struct t13x *wc, const struct firmware *fw,
const char *filename)
{
int res;
int offset = 0x200000;
const u8 *data, *end;
int i = 0;
dev_info(&wc->dev->dev,
"Uploading %s. This can take up to 30 seconds.\n", filename);
data = &fw->data[sizeof(struct t13x_firm_header)];
end = &fw->data[fw->size];
while (data < end) {
/* Erase sectors */
clear_busy(wc);
write_enable(wc);
erase_64kb_sector(wc, offset);
data += 0x10000;
offset += 0x10000;
}
data = &fw->data[sizeof(struct t13x_firm_header)];
offset = 0x200000;
while ((data+i) < end) {
/* Page in program as we fill page buffers */
if (!(offset % 0x0100)) {
write_enable(wc);
chip_select(wc, 0);
iowrite32be(0x186, wc->membase + SPICR);
chip_select(wc, 1);
flash_write(wc, 0x02);
flash_write(wc, (offset >> 16) & 0xff);
flash_write(wc, (offset >> 8) & 0xff);
flash_write(wc, 0x00);
}
flash_write(wc, data[i] & 0xff);
iowrite32be(0x086, wc->membase + SPICR);
clear_xmit_fifo(wc);
iowrite32be(0x186, wc->membase + SPICR);
i++;
offset++;
if (!((offset) % (0x0100)))
clear_busy(wc);
}
clear_xmit_fifo(wc);
chip_select(wc, 0);
clear_busy(wc);
/* Reset te13x fpga after loading firmware */
dev_info(&wc->dev->dev, "Firmware load complete. Reseting device.\n");
res = pci_save_state(wc->dev);
iowrite32be(0xe00, wc->membase + TDM_CONTROL);
msleep(2000);
pci_restore_state(wc->dev);
iowrite32be(0, wc->membase + 0x04);
return 0;
}
/**
* t13x_read_serial - Returns the serial number of the board.
* @wc: The board whos serial number we are reading.
*
* The buffer returned is dynamically allocated and must be kfree'd by the
* caller. If memory could not be allocated, NULL is returned.
*
* Must be called in process context.
*
*/
static char *t13x_read_serial(struct t13x *wc)
{
int i;
static const int MAX_SERIAL = 20*5;
unsigned char c;
unsigned char *serial = kzalloc(MAX_SERIAL + 1, GFP_KERNEL);
if (!serial)
return NULL;
/* Setup read flash byte command */
iowrite32be(0xa, wc->membase + SPICR);
iowrite32be(0x086, wc->membase + SPICR);
chip_select(wc, 1);
flash_write(wc, 0x03);
flash_write(wc, 0x1f);
flash_write(wc, 0x00);
flash_write(wc, 0x00);
clear_xmit_fifo(wc);
flash_read(wc);
flash_read(wc);
flash_read(wc);
flash_read(wc);
for (i = 0; i < MAX_SERIAL; ++i) {
flash_write(wc, 0xff);
c = flash_read(wc);
if (c >= 0x20 && c <= 0x7e)
serial[i] = c;
else
break;
}
if (!i) {
kfree(serial);
serial = NULL;
}
return serial;
}
static int t13x_check_firmware(struct t13x *wc)
{
const struct firmware *fw;
char *te133_firmware = "dahdi-fw-te133.bin";
char *te134_firmware = "dahdi-fw-te134.bin";
char *filename;
const struct t13x_firm_header *header;
int res = 0;
u32 crc;
u32 version = 0;
const u32 FIRMWARE_VERSION = 0x6f0017;
version = t13x_get_firmware_version(wc);
if ((FIRMWARE_VERSION == version) && !force_firmware) {
dev_info(&wc->dev->dev, "Firmware version: %x\n", version);
return 0;
}
if (force_firmware) {
dev_info(&wc->dev->dev,
"force_firmware module parameter is set. Forcing firmware load, regardless of version\n");
} else if (is_pcie(wc)) {
dev_info(&wc->dev->dev,
"Firmware %x is running, but we require %x. ERROR: This version of dahdi temporarily disabled field upgradeable firmware. Please upgrade your dahdi revision.\n",
version, FIRMWARE_VERSION);
return -EIO;
} else {
dev_info(&wc->dev->dev,
"Firmware %x is running, but we require %x\n",
version, FIRMWARE_VERSION);
}
if (is_pcie(wc))
filename = te133_firmware;
else
filename = te134_firmware;
res = request_firmware(&fw, filename, &wc->dev->dev);
if (res) {
dev_info(&wc->dev->dev,
"firmware %s not available from userspace\n", filename);
goto cleanup;
}
header = (const struct t13x_firm_header *)fw->data;
/* Check the crc */
crc = crc32(~0, &fw->data[10], fw->size - 10) ^ ~0;
if (memcmp("DIGIUM", header->header, sizeof(header->header)) ||
(le32_to_cpu(header->chksum) != crc)) {
dev_info(&wc->dev->dev,
"%s is invalid. Please reinstall.\n", filename);
goto cleanup;
}
/* Check the file vs required firmware versions */
if (le32_to_cpu(header->version) != FIRMWARE_VERSION) {
dev_err(&wc->dev->dev,
"Existing firmware file %s is version %x, but we require %x. Please install the correct firmware file.\n",
filename, le32_to_cpu(header->version),
FIRMWARE_VERSION);
res = -EIO;
goto cleanup;
}
dev_info(&wc->dev->dev, "Found %s (version: %x) Preparing for flash\n",
filename, header->version);
res = t13x_update_firmware(wc, fw, filename);
version = t13x_get_firmware_version(wc);
dev_info(&wc->dev->dev, "Reset into firmware version: %x\n", version);
if ((FIRMWARE_VERSION != version) && !force_firmware) {
dev_err(&wc->dev->dev,
"Improper firmware version is running\n");
res = -EIO;
goto cleanup;
}
if (res) {
dev_info(&wc->dev->dev, "Failed to load firmware %s\n",
filename);
}
cleanup:
release_firmware(fw);
return res;
}
static void soft_reset_fpga(struct t13x *wc)
{
/* digium_gpo */
iowrite32be(0x0, wc->membase);
/* xps_intc */
iowrite32be(0x0, wc->membase + 0x300);
iowrite32be(0x0, wc->membase + 0x308);
iowrite32be(0x0, wc->membase + 0x310);
iowrite32be(0x0, wc->membase + 0x31C);
/* xps_spi_config_flash */
iowrite32be(0xA, wc->membase + 0x200);
/* tdm engine */
iowrite32be(0x0, wc->membase + 0x2000);
iowrite32be(0x0, wc->membase + 0x2000);
iowrite32be(0x0, wc->membase + 0x2000);
}
static int __devinit te13xp_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct t13x *wc;
const struct t13x_desc *d = (struct t13x_desc *) ent->driver_data;
unsigned int x;
int res;
unsigned int index = -1;
enum linemode type;
if (pci_enable_device(pdev))
return -EIO;
for (x = 0; x < ARRAY_SIZE(ifaces); x++) {
if (!ifaces[x]) {
index = x;
break;
}
}
if (-1 == index) {
pr_info("Too many interfaces\n");
pci_disable_device(pdev);
return -EIO;
}
wc = kzalloc(sizeof(*wc), GFP_KERNEL);
if (!wc) {
pci_disable_device(pdev);
return -ENOMEM;
}
wc->dev = pdev;
wc->devtype = d;
dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
/* Set the performance counters to -1 since this card currently does
* not support collecting them. */
memset(&wc->span.count, -1, sizeof(wc->span.count));
ifaces[index] = wc;
sprintf(wc->span.name, "WCT13x/%d", index);
snprintf(wc->span.desc, sizeof(wc->span.desc) - 1, "%s Card %d",
d->name, index);
wc->not_ready = 1;
wc->ledstate = -1;
spin_lock_init(&wc->reglock);
mutex_init(&wc->lock);
setup_timer(&wc->timer, te13xp_timer, (unsigned long)wc);
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20)
INIT_WORK(&wc->timer_work, timer_work_func, wc);
# else
INIT_WORK(&wc->timer_work, timer_work_func);
# endif
wc->ddev = dahdi_create_device();
if (!wc->ddev) {
res = -ENOMEM;
goto fail_exit;
}
wc->ddev->manufacturer = "Digium";
wc->ddev->location = kasprintf(GFP_KERNEL, "PCI Bus %02d Slot %02d",
pdev->bus->number,
PCI_SLOT(pdev->devfn) + 1);
if (!wc->ddev->location) {
res = -ENOMEM;
goto fail_exit;
}
wc->membase = pci_iomap(pdev, 0, 0);
if (pci_request_regions(pdev, wc->devtype->name))
dev_info(&wc->dev->dev, "Unable to request regions\n");
/* Reset entire fpga */
soft_reset_fpga(wc);
/* Enable writes to fpga status register */
iowrite32be(0, wc->membase + 0x04);
wc->name = kasprintf(GFP_KERNEL, "wcte13xp%d", index);
if (!wc->name) {
res = -ENOMEM;
goto fail_exit;
}
pci_set_master(pdev);
pci_set_drvdata(pdev, wc);
/* Check for field updatable firmware */
res = t13x_check_firmware(wc);
if (res)
goto fail_exit;
wc->ddev->hardware_id = t13x_read_serial(wc);
wc->wq = create_singlethread_workqueue(wc->name);
if (!wc->wq) {
res = -ENOMEM;
goto fail_exit;
}
/* Initial buffer latency size,
adjustable on load by modparam "latency" */
if (latency > 0 && latency < DRING_SIZE) {
wc->latency = latency;
if (TE13X_DEFAULT_LATENCY != latency)
dev_info(&wc->dev->dev,
"latency manually overridden to %d\n",
latency);
} else {
dev_info(&wc->dev->dev,
"latency module parameter must be between 1 and %d\n",
DRING_SIZE);
res = -EPERM;
goto fail_exit;
}
if (alloc_dring(wc)) {
res = -ENOMEM;
goto fail_exit;
}
reset_dring(wc);
create_sysfs_files(wc);
res = t1_hardware_post_init(wc, &type);
if (res)
goto fail_exit;
wc->span.chans = wc->chans;
res = t1_software_init(wc, type);
if (res)
goto fail_exit;
#ifdef VPM_SUPPORT
if (!wc->vpm)
t13x_vpm_init(wc);
#endif
wc->span.ops = &t1_span_ops;
list_add_tail(&wc->span.device_node, &wc->ddev->spans);
/* Span is in red alarm by default */
wc->span.alarms = DAHDI_ALARM_NONE;
res = dahdi_register_device(wc->ddev, &wc->dev->dev);
if (res) {
dev_info(&wc->dev->dev, "Unable to register with DAHDI\n");
goto fail_exit;
}
pci_enable_msi(pdev);
if (request_irq(pdev->irq, te13xp_isr,
DAHDI_IRQ_SHARED, "te13xp", wc)) {
dev_notice(&wc->dev->dev,
"Unable to request IRQ %d\n", pdev->irq);
res = -EIO;
goto fail_exit;
}
set_bit(INITIALIZED, &wc->bit_flags);
mod_timer(&wc->timer, jiffies + HZ/5);
if (wc->ddev->hardware_id) {
dev_info(&wc->dev->dev, "Found a %s (SN: %s)\n",
wc->devtype->name, wc->ddev->hardware_id);
} else {
dev_info(&wc->dev->dev, "Found a %s\n",
wc->devtype->name);
}
/* Enable hardware interrupts */
iowrite32be(-1, wc->membase + IAR);
iowrite32be(DESC_UNDERRUN|DESC_COMPLETE, wc->membase + IER);
iowrite32be(MER_ME|MER_HIE, wc->membase + MER);
/* Enable hardware DMA engine */
if (vpmsupport == 1) {
iowrite32be(ENABLE_DMA|ENABLE_ECHOCAN_TDM,
wc->membase + TDM_CONTROL);
} else {
iowrite32be(ENABLE_DMA, wc->membase + TDM_CONTROL);
}
wc->not_ready--;
te13xp_check_for_interrupts(wc);
return 0;
fail_exit:
if (wc->membase)
pci_iounmap(wc->dev, wc->membase);
pci_release_regions(wc->dev);
free_wc(wc);
pci_disable_device(pdev);
return res;
}
static void __devexit te13xp_remove_one(struct pci_dev *pdev)
{
struct t13x *wc = pci_get_drvdata(pdev);
dev_info(&wc->dev->dev, "Removing a Wildcard TE13xP.\n");
if (!wc)
return;
clear_bit(INITIALIZED, &wc->bit_flags);
smp_mb__after_clear_bit();
del_timer_sync(&wc->timer);
flush_workqueue(wc->wq);
del_timer_sync(&wc->timer);
/* Quiesce DMA engine interrupts */
iowrite32be(0, wc->membase + TDM_CONTROL);
iowrite32be(0, wc->membase + IER);
iowrite32be(0, wc->membase + MER);
iowrite32be(-1, wc->membase + IAR);
msleep_interruptible(2);
free_irq(pdev->irq, wc);
pci_disable_msi(pdev);
/* Turn off status LED */
t1_setleds(wc, 0);
#ifdef VPM_SUPPORT
if (wc->vpm)
release_vpm450m(wc->vpm);
wc->vpm = NULL;
#endif
dahdi_unregister_device(wc->ddev);
remove_sysfs_files(wc);
if (wc->membase)
pci_iounmap(wc->dev, wc->membase);
pci_release_regions(wc->dev);
free_dring(wc);
free_wc(wc);
pci_disable_device(pdev);
}
static DEFINE_PCI_DEVICE_TABLE(te13xp_pci_tbl) = {
{ 0xd161, 0x800a, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &te133},
{ 0xd161, 0x800b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &te134},
{ 0 }
};
static void te13xp_shutdown(struct pci_dev *pdev)
{
struct t13x *wc = pci_get_drvdata(pdev);
dev_info(&wc->dev->dev, "Quiescing a Wildcard TE13xP.\n");
if (!wc)
return;
/* Quiesce and mask DMA engine interrupts */
iowrite32be(0, wc->membase + TDM_CONTROL);
iowrite32be(0, wc->membase + IER);
iowrite32be(0, wc->membase + MER);
iowrite32be(-1, wc->membase + IAR);
/* Flush quiesce commands before exit */
ioread32be(wc->membase);
}
static int te13xp_suspend(struct pci_dev *pdev, pm_message_t state)
{
return -ENOSYS;
}
MODULE_DEVICE_TABLE(pci, te13xp_pci_tbl);
static struct pci_driver te13xp_driver = {
.name = "wcte13xp",
.probe = te13xp_init_one,
.remove = __devexit_p(te13xp_remove_one),
.shutdown = te13xp_shutdown,
.suspend = te13xp_suspend,
.id_table = te13xp_pci_tbl,
};
static int __init te13xp_init(void)
{
int res;
if (strcasecmp(default_linemode, "t1") &&
strcasecmp(default_linemode, "j1") &&
strcasecmp(default_linemode, "e1")) {
pr_err("'%s' is an unknown span type.\n", default_linemode);
default_linemode = "t1";
return -EINVAL;
}
res = dahdi_pci_module(&te13xp_driver);
if (res)
return -ENODEV;
return 0;
}
static void __exit te13xp_cleanup(void)
{
pci_unregister_driver(&te13xp_driver);
}
module_param(debug, int, S_IRUGO | S_IWUSR);
module_param(default_linemode, charp, S_IRUGO);
MODULE_PARM_DESC(default_linemode, "\"t1\"(default), \"e1\", or \"j1\".");
module_param(alarmdebounce, int, S_IRUGO | S_IWUSR);
module_param(losalarmdebounce, int, S_IRUGO | S_IWUSR);
module_param(aisalarmdebounce, int, S_IRUGO | S_IWUSR);
module_param(yelalarmdebounce, int, S_IRUGO | S_IWUSR);
#ifdef VPM_SUPPORT
module_param(vpmsupport, int, 0600);
#endif
module_param(force_firmware, int, S_IRUGO);
module_param(latency, int, S_IRUGO);
MODULE_PARM_DESC(latency, "How many milliseconds of audio to buffer between card and host (3ms default). This number will increase during runtime, dynamically, if dahdi detects that it is too small. This is commonly refered to as a \"latency bump\"");
MODULE_DESCRIPTION("Wildcard Digital Card Driver");
MODULE_AUTHOR("Digium Incorporated <support@digium.com>");
MODULE_LICENSE("GPL v2");
module_init(te13xp_init);
module_exit(te13xp_cleanup);